Docker container with Python3, Tensorflow and Jupyter for training models on AWS Stores all notebooks to S3 bucket*
-
Create a S3 bucket on AWS
-
Clone the repo
-
Build docker image
docker build -t tensorflow-jupyter-aws-docker .
-
Credentials
Ensure AWS credentials are available in your shell, if not set them manually:
export AWS_ACCESS_KEY_ID=### export AWS_SECRET_ACCESS_KEY=### export AWS_SESSION_TOKEN=###
-
Run image
docker run -it --rm \ -p=8888:8888 \ --name=tensorflow-jupyter-aws-docker \ -e "AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID" \ -e "AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY" \ -e "AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN" \ -e "AWS_REGION=$AWS_REGION" \ -e "AWS_S3_BUCKET=your-s3-bucket-name" \ tensorflow-jupyter-aws-docker develop
NOTE: AWS_SESSION_TOKEN might be optional
-
Open the Jupyter notebook
From the terminal, copy the notebook url with token in browser
[I 07:19:30.621 NotebookApp] Writing notebook server cookie secret to /root/.local/share/jupyter/runtime/notebook_cookie_secret jupyter_http_over_ws extension initialized. Listening on /http_over_websocket [I 07:19:31.551 NotebookApp] Serving contents [I 07:19:31.551 NotebookApp] The Jupyter Notebook is running at: [I 07:19:31.552 NotebookApp] http://(b4e1cc10327f or 127.0.0.1):8888/?token=a3e4a939f857d0a9ba40daa73dc7a20cbd6219947843f3ca [I 07:19:31.552 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 07:19:31.558 NotebookApp] To access the notebook, open this file in a browser: file:///root/.local/share/jupyter/runtime/nbserver-12-open.html Or copy and paste one of these URLs: http://(b4e1cc10327f or 127.0.0.1):8888/?token=a3e4a939f857d0a9ba40daa73dc7a20cbd6219947843f3ca