forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cmsketch.go
855 lines (794 loc) · 26.7 KB
/
cmsketch.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"bytes"
"fmt"
"math"
"reflect"
"sort"
"strings"
"github.com/pingcap/tidb/sessionctx"
"github.com/cznic/mathutil"
"github.com/cznic/sortutil"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/hack"
"github.com/pingcap/tipb/go-tipb"
"github.com/twmb/murmur3"
)
// topNThreshold is the minimum ratio of the number of topn elements in CMSketch, 10 means 1 / 10 = 10%.
const topNThreshold = uint64(10)
// CMSketch is used to estimate point queries.
// Refer: https://en.wikipedia.org/wiki/Count-min_sketch
type CMSketch struct {
depth int32
width int32
count uint64 // TopN is not counted in count
defaultValue uint64 // In sampled data, if cmsketch returns a small value (less than avg value / 2), then this will returned.
table [][]uint32
}
// NewCMSketch returns a new CM sketch.
func NewCMSketch(d, w int32) *CMSketch {
tbl := make([][]uint32, d)
// Background: The Go's memory allocator will ask caller to sweep spans in some scenarios.
// This can cause memory allocation request latency unpredictable, if the list of spans which need sweep is too long.
// For memory allocation large than 32K, the allocator will never allocate memory from spans list.
//
// The memory referenced by the CMSketch will never be freed.
// If the number of table or index is extremely large, there will be a large amount of spans in global list.
// The default value of `d` is 5 and `w` is 2048, if we use a single slice for them the size will be 40K.
// This allocation will be handled by mheap and will never have impact on normal allocations.
arena := make([]uint32, d*w)
for i := range tbl {
tbl[i] = arena[i*int(w) : (i+1)*int(w)]
}
return &CMSketch{depth: d, width: w, table: tbl}
}
// topNHelper wraps some variables used when building cmsketch with top n.
type topNHelper struct {
sampleSize uint64
sorted []dataCnt
onlyOnceItems uint64
sumTopN uint64
actualNumTop uint32
}
func newTopNHelper(sample [][]byte, numTop uint32) *topNHelper {
counter := make(map[hack.MutableString]uint64, len(sample))
for i := range sample {
counter[hack.String(sample[i])]++
}
sorted, onlyOnceItems := make([]dataCnt, 0, len(counter)), uint64(0)
for key, cnt := range counter {
sorted = append(sorted, dataCnt{hack.Slice(string(key)), cnt})
if cnt == 1 {
onlyOnceItems++
}
}
sort.SliceStable(sorted, func(i, j int) bool { return sorted[i].cnt > sorted[j].cnt })
var (
sumTopN uint64
sampleNDV = uint32(len(sorted))
)
numTop = mathutil.MinUint32(sampleNDV, numTop) // Ensure numTop no larger than sampNDV.
// Only element whose frequency is not smaller than 2/3 multiples the
// frequency of the n-th element are added to the TopN statistics. We chose
// 2/3 as an empirical value because the average cardinality estimation
// error is relatively small compared with 1/2.
var actualNumTop uint32
for ; actualNumTop < sampleNDV && actualNumTop < numTop*2; actualNumTop++ {
if actualNumTop >= numTop && sorted[actualNumTop].cnt*3 < sorted[numTop-1].cnt*2 {
break
}
if sorted[actualNumTop].cnt == 1 {
break
}
sumTopN += sorted[actualNumTop].cnt
}
return &topNHelper{uint64(len(sample)), sorted, onlyOnceItems, sumTopN, actualNumTop}
}
// NewCMSketchAndTopN returns a new CM sketch with TopN elements, the estimate NDV and the scale ratio.
func NewCMSketchAndTopN(d, w int32, sample [][]byte, numTop uint32, rowCount uint64) (*CMSketch, *TopN, uint64, uint64) {
if rowCount == 0 || len(sample) == 0 {
return nil, nil, 0, 0
}
helper := newTopNHelper(sample, numTop)
// rowCount is not a accurate value when fast analyzing
// In some cases, if user triggers fast analyze when rowCount is close to sampleSize, unexpected bahavior might happen.
rowCount = mathutil.MaxUint64(rowCount, uint64(len(sample)))
estimateNDV, scaleRatio := calculateEstimateNDV(helper, rowCount)
defaultVal := calculateDefaultVal(helper, estimateNDV, scaleRatio, rowCount)
c, t := buildCMSAndTopN(helper, d, w, scaleRatio, defaultVal)
return c, t, estimateNDV, scaleRatio
}
func buildCMSAndTopN(helper *topNHelper, d, w int32, scaleRatio uint64, defaultVal uint64) (c *CMSketch, t *TopN) {
c = NewCMSketch(d, w)
enableTopN := helper.sampleSize/topNThreshold <= helper.sumTopN
if enableTopN {
t = NewTopN(int(helper.actualNumTop))
for i := uint32(0); i < helper.actualNumTop; i++ {
data, cnt := helper.sorted[i].data, helper.sorted[i].cnt
t.AppendTopN(data, cnt*scaleRatio)
}
t.Sort()
helper.sorted = helper.sorted[helper.actualNumTop:]
}
c.defaultValue = defaultVal
for i := range helper.sorted {
data, cnt := helper.sorted[i].data, helper.sorted[i].cnt
// If the value only occurred once in the sample, we assumes that there is no difference with
// value that does not occurred in the sample.
rowCount := defaultVal
if cnt > 1 {
rowCount = cnt * scaleRatio
}
c.InsertBytesByCount(data, rowCount)
}
return
}
func calculateDefaultVal(helper *topNHelper, estimateNDV, scaleRatio, rowCount uint64) uint64 {
sampleNDV := uint64(len(helper.sorted))
if rowCount <= (helper.sampleSize-helper.onlyOnceItems)*scaleRatio {
return 1
}
estimateRemainingCount := rowCount - (helper.sampleSize-helper.onlyOnceItems)*scaleRatio
return estimateRemainingCount / mathutil.MaxUint64(1, estimateNDV-sampleNDV+helper.onlyOnceItems)
}
// MemoryUsage returns the total memory usage of a CMSketch.
// only calc the hashtable size(CMSketch.table) and the CMSketch.topN
// data are not tracked because size of CMSketch.topN take little influence
// We ignore the size of other metadata in CMSketch.
func (c *CMSketch) MemoryUsage() (sum int64) {
sum = int64(c.depth * c.width * 4)
return
}
// queryAddTopN TopN adds count to CMSketch.topN if exists, and returns the count of such elements after insert.
// If such elements does not in topn elements, nothing will happen and false will be returned.
func (c *TopN) updateTopNWithDelta(d []byte, delta uint64, increase bool) bool {
if c == nil || c.TopN == nil {
return false
}
idx := c.findTopN(d)
if idx >= 0 {
if increase {
c.TopN[idx].Count += delta
} else {
c.TopN[idx].Count -= delta
}
return true
}
return false
}
// InsertBytes inserts the bytes value into the CM Sketch.
func (c *CMSketch) InsertBytes(bytes []byte) {
c.InsertBytesByCount(bytes, 1)
}
// InsertBytesByCount adds the bytes value into the TopN (if value already in TopN) or CM Sketch by delta, this does not updates c.defaultValue.
func (c *CMSketch) InsertBytesByCount(bytes []byte, count uint64) {
h1, h2 := murmur3.Sum128(bytes)
c.count += count
for i := range c.table {
j := (h1 + h2*uint64(i)) % uint64(c.width)
c.table[i][j] += uint32(count)
}
}
func (c *CMSketch) considerDefVal(cnt uint64) bool {
return (cnt == 0 || (cnt > c.defaultValue && cnt < 2*(c.count/uint64(c.width)))) && c.defaultValue > 0
}
func updateValueBytes(c *CMSketch, t *TopN, d []byte, count uint64) {
h1, h2 := murmur3.Sum128(d)
if oriCount, ok := t.QueryTopN(d); ok {
if count > oriCount {
t.updateTopNWithDelta(d, count-oriCount, true)
} else {
t.updateTopNWithDelta(d, oriCount-count, false)
}
}
c.setValue(h1, h2, count)
}
// setValue sets the count for value that hashed into (h1, h2), and update defaultValue if necessary.
func (c *CMSketch) setValue(h1, h2 uint64, count uint64) {
oriCount := c.queryHashValue(h1, h2)
if c.considerDefVal(oriCount) {
// We should update c.defaultValue if we used c.defaultValue when getting the estimate count.
// This should make estimation better, remove this line if it does not work as expected.
c.defaultValue = uint64(float64(c.defaultValue)*0.95 + float64(c.defaultValue)*0.05)
if c.defaultValue == 0 {
// c.defaultValue never guess 0 since we are using a sampled data.
c.defaultValue = 1
}
}
c.count += count - oriCount
// let it overflow naturally
deltaCount := uint32(count) - uint32(oriCount)
for i := range c.table {
j := (h1 + h2*uint64(i)) % uint64(c.width)
c.table[i][j] = c.table[i][j] + deltaCount
}
}
// SubValue remove a value from the CMSketch.
func (c *CMSketch) SubValue(h1, h2 uint64, count uint64) {
c.count -= count
for i := range c.table {
j := (h1 + h2*uint64(i)) % uint64(c.width)
c.table[i][j] = c.table[i][j] - uint32(count)
}
}
func queryValue(sc *stmtctx.StatementContext, c *CMSketch, t *TopN, val types.Datum) (uint64, error) {
bytes, err := tablecodec.EncodeValue(sc, nil, val)
if err != nil {
return 0, errors.Trace(err)
}
h1, h2 := murmur3.Sum128(bytes)
if ret, ok := t.QueryTopN(bytes); ok {
return ret, nil
}
return c.queryHashValue(h1, h2), nil
}
// QueryBytes is used to query the count of specified bytes.
func (c *CMSketch) QueryBytes(d []byte) uint64 {
failpoint.Inject("mockQueryBytesMaxUint64", func(val failpoint.Value) {
failpoint.Return(uint64(val.(int)))
})
h1, h2 := murmur3.Sum128(d)
return c.queryHashValue(h1, h2)
}
func (c *CMSketch) queryHashValue(h1, h2 uint64) uint64 {
vals := make([]uint32, c.depth)
min := uint32(math.MaxUint32)
// We want that when res is 0 before the noise is eliminated, the default value is not used.
// So we need a temp value to distinguish before and after eliminating noise.
temp := uint32(1)
for i := range c.table {
j := (h1 + h2*uint64(i)) % uint64(c.width)
if min > c.table[i][j] {
min = c.table[i][j]
}
noise := (c.count - uint64(c.table[i][j])) / (uint64(c.width) - 1)
if uint64(c.table[i][j]) == 0 {
vals[i] = 0
} else if uint64(c.table[i][j]) < noise {
vals[i] = temp
} else {
vals[i] = c.table[i][j] - uint32(noise) + temp
}
}
sort.Sort(sortutil.Uint32Slice(vals))
res := vals[(c.depth-1)/2] + (vals[c.depth/2]-vals[(c.depth-1)/2])/2
if res > min+temp {
res = min + temp
}
if res == 0 {
return uint64(0)
}
res = res - temp
if c.considerDefVal(uint64(res)) {
return c.defaultValue
}
return uint64(res)
}
// MergeTopNAndUpdateCMSketch merges the src TopN into the dst, and spilled values will be inserted into the CMSketch.
func MergeTopNAndUpdateCMSketch(dst, src *TopN, c *CMSketch, numTop uint32) []TopNMeta {
topNs := []*TopN{src, dst}
mergedTopN, popedTopNPair := MergeTopN(topNs, numTop)
if mergedTopN == nil {
// mergedTopN == nil means the total count of the input TopN are equal to zero
return popedTopNPair
}
dst.TopN = mergedTopN.TopN
for _, topNMeta := range popedTopNPair {
c.InsertBytesByCount(topNMeta.Encoded, topNMeta.Count)
}
return popedTopNPair
}
// MergeCMSketch merges two CM Sketch.
func (c *CMSketch) MergeCMSketch(rc *CMSketch) error {
if c == nil || rc == nil {
return nil
}
if c.depth != rc.depth || c.width != rc.width {
return errors.New("Dimensions of Count-Min Sketch should be the same")
}
c.count += rc.count
for i := range c.table {
for j := range c.table[i] {
c.table[i][j] += rc.table[i][j]
}
}
return nil
}
// MergeCMSketch4IncrementalAnalyze merges two CM Sketch for incremental analyze. Since there is no value
// that appears partially in `c` and `rc` for incremental analyze, it uses `max` to merge them.
// Here is a simple proof: when we query from the CM sketch, we use the `min` to get the answer:
// (1): For values that only appears in `c, using `max` to merge them affects the `min` query result less than using `sum`;
// (2): For values that only appears in `rc`, it is the same as condition (1);
// (3): For values that appears both in `c` and `rc`, if they do not appear partially in `c` and `rc`, for example,
// if `v` appears 5 times in the table, it can appears 5 times in `c` and 3 times in `rc`, then `max` also gives the correct answer.
// So in fact, if we can know the number of appearances of each value in the first place, it is better to use `max` to construct the CM sketch rather than `sum`.
func (c *CMSketch) MergeCMSketch4IncrementalAnalyze(rc *CMSketch, numTopN uint32) error {
if c.depth != rc.depth || c.width != rc.width {
return errors.New("Dimensions of Count-Min Sketch should be the same")
}
for i := range c.table {
c.count = 0
for j := range c.table[i] {
c.table[i][j] = mathutil.MaxUint32(c.table[i][j], rc.table[i][j])
c.count += uint64(c.table[i][j])
}
}
return nil
}
// CMSketchToProto converts CMSketch to its protobuf representation.
func CMSketchToProto(c *CMSketch, topn *TopN) *tipb.CMSketch {
protoSketch := &tipb.CMSketch{}
if c != nil {
protoSketch.Rows = make([]*tipb.CMSketchRow, c.depth)
for i := range c.table {
protoSketch.Rows[i] = &tipb.CMSketchRow{Counters: make([]uint32, c.width)}
for j := range c.table[i] {
protoSketch.Rows[i].Counters[j] = c.table[i][j]
}
}
protoSketch.DefaultValue = c.defaultValue
}
if topn != nil {
for _, dataMeta := range topn.TopN {
protoSketch.TopN = append(protoSketch.TopN, &tipb.CMSketchTopN{Data: dataMeta.Encoded, Count: dataMeta.Count})
}
}
return protoSketch
}
// CMSketchAndTopNFromProto converts CMSketch and TopN from its protobuf representation.
func CMSketchAndTopNFromProto(protoSketch *tipb.CMSketch) (*CMSketch, *TopN) {
if protoSketch == nil {
return nil, nil
}
retTopN := TopNFromProto(protoSketch.TopN)
if len(protoSketch.Rows) == 0 {
return nil, retTopN
}
c := NewCMSketch(int32(len(protoSketch.Rows)), int32(len(protoSketch.Rows[0].Counters)))
for i, row := range protoSketch.Rows {
c.count = 0
for j, counter := range row.Counters {
c.table[i][j] = counter
c.count = c.count + uint64(counter)
}
}
c.defaultValue = protoSketch.DefaultValue
return c, retTopN
}
// TopNFromProto converts TopN from its protobuf representation.
func TopNFromProto(protoTopN []*tipb.CMSketchTopN) *TopN {
if len(protoTopN) == 0 {
return nil
}
topN := NewTopN(32)
for _, e := range protoTopN {
d := make([]byte, len(e.Data))
copy(d, e.Data)
topN.AppendTopN(d, e.Count)
}
topN.Sort()
return topN
}
// EncodeCMSketchWithoutTopN encodes the given CMSketch to byte slice.
// Note that it does not include the topN.
func EncodeCMSketchWithoutTopN(c *CMSketch) ([]byte, error) {
if c == nil {
return nil, nil
}
p := CMSketchToProto(c, nil)
p.TopN = nil
protoData, err := p.Marshal()
return protoData, err
}
// DecodeCMSketchAndTopN decode a CMSketch from the given byte slice.
func DecodeCMSketchAndTopN(data []byte, topNRows []chunk.Row) (*CMSketch, *TopN, error) {
if data == nil && len(topNRows) == 0 {
return nil, nil, nil
}
pbTopN := make([]*tipb.CMSketchTopN, 0, len(topNRows))
for _, row := range topNRows {
data := make([]byte, len(row.GetBytes(0)))
copy(data, row.GetBytes(0))
pbTopN = append(pbTopN, &tipb.CMSketchTopN{
Data: data,
Count: row.GetUint64(1),
})
}
if len(data) == 0 {
return nil, TopNFromProto(pbTopN), nil
}
p := &tipb.CMSketch{}
err := p.Unmarshal(data)
if err != nil {
return nil, nil, errors.Trace(err)
}
p.TopN = pbTopN
cm, topN := CMSketchAndTopNFromProto(p)
return cm, topN, nil
}
// TotalCount returns the total count in the sketch, it is only used for test.
func (c *CMSketch) TotalCount() uint64 {
return c.count
}
// Equal tests if two CM Sketch equal, it is only used for test.
func (c *CMSketch) Equal(rc *CMSketch) bool {
return reflect.DeepEqual(c, rc)
}
// Copy makes a copy for current CMSketch.
func (c *CMSketch) Copy() *CMSketch {
if c == nil {
return nil
}
tbl := make([][]uint32, c.depth)
for i := range tbl {
tbl[i] = make([]uint32, c.width)
copy(tbl[i], c.table[i])
}
return &CMSketch{count: c.count, width: c.width, depth: c.depth, table: tbl, defaultValue: c.defaultValue}
}
// AppendTopN appends a topn into the TopN struct.
func (c *TopN) AppendTopN(data []byte, count uint64) {
c.TopN = append(c.TopN, TopNMeta{data, count})
}
// GetWidthAndDepth returns the width and depth of CM Sketch.
func (c *CMSketch) GetWidthAndDepth() (int32, int32) {
return c.width, c.depth
}
// CalcDefaultValForAnalyze calculate the default value for Analyze.
// The value of it is count / NDV in CMSketch. This means count and NDV are not include topN.
func (c *CMSketch) CalcDefaultValForAnalyze(NDV uint64) {
c.defaultValue = c.count / mathutil.MaxUint64(1, NDV)
}
// TopN stores most-common values, which is used to estimate point queries.
type TopN struct {
TopN []TopNMeta
}
func (c *TopN) String() string {
if c == nil {
return "EmptyTopN"
}
builder := &strings.Builder{}
fmt.Fprintf(builder, "TopN{length: %v, ", len(c.TopN))
fmt.Fprint(builder, "[")
for i := 0; i < len(c.TopN); i++ {
fmt.Fprintf(builder, "(%v, %v)", c.TopN[i].Encoded, c.TopN[i].Count)
if i+1 != len(c.TopN) {
fmt.Fprint(builder, ", ")
}
}
fmt.Fprint(builder, "]")
fmt.Fprint(builder, "}")
return builder.String()
}
// Num returns the ndv of the TopN.
// TopN is declared directly in Histogram. So the Len is occupied by the Histogram. We use Num instead.
func (c *TopN) Num() int {
if c == nil {
return 0
}
return len(c.TopN)
}
// DecodedString returns the value with decoded result.
func (c *TopN) DecodedString(ctx sessionctx.Context, colTypes []byte) (string, error) {
builder := &strings.Builder{}
fmt.Fprintf(builder, "TopN{length: %v, ", len(c.TopN))
fmt.Fprint(builder, "[")
var tmpDatum types.Datum
for i := 0; i < len(c.TopN); i++ {
tmpDatum.SetBytes(c.TopN[i].Encoded)
valStr, err := ValueToString(ctx.GetSessionVars(), &tmpDatum, len(colTypes), colTypes)
if err != nil {
return "", err
}
fmt.Fprintf(builder, "(%v, %v)", valStr, c.TopN[i].Count)
if i+1 != len(c.TopN) {
fmt.Fprint(builder, ", ")
}
}
fmt.Fprint(builder, "]")
fmt.Fprint(builder, "}")
return builder.String(), nil
}
// Copy makes a copy for current TopN.
func (c *TopN) Copy() *TopN {
if c == nil {
return nil
}
topN := make([]TopNMeta, len(c.TopN))
for i, t := range c.TopN {
topN[i].Encoded = make([]byte, len(t.Encoded))
copy(topN[i].Encoded, t.Encoded)
topN[i].Count = t.Count
}
return &TopN{
TopN: topN,
}
}
// TopNMeta stores the unit of the TopN.
type TopNMeta struct {
Encoded []byte
Count uint64
}
// QueryTopN returns the results for (h1, h2) in murmur3.Sum128(), if not exists, return (0, false).
func (c *TopN) QueryTopN(d []byte) (uint64, bool) {
if c == nil {
return 0, false
}
idx := c.findTopN(d)
if idx < 0 {
return 0, false
}
return c.TopN[idx].Count, true
}
func (c *TopN) findTopN(d []byte) int {
if c == nil {
return -1
}
match := false
idx := sort.Search(len(c.TopN), func(i int) bool {
cmp := bytes.Compare(c.TopN[i].Encoded, d)
if cmp == 0 {
match = true
}
return cmp >= 0
})
if !match {
return -1
}
return idx
}
// LowerBound searches on the sorted top-n items,
// returns the smallest index i such that the value at element i is not less than `d`.
func (c *TopN) LowerBound(d []byte) (idx int, match bool) {
if c == nil {
return 0, false
}
idx = sort.Search(len(c.TopN), func(i int) bool {
cmp := bytes.Compare(c.TopN[i].Encoded, d)
if cmp == 0 {
match = true
}
return cmp >= 0
})
return idx, match
}
// BetweenCount estimates the row count for interval [l, r).
func (c *TopN) BetweenCount(l, r []byte) uint64 {
if c == nil {
return 0
}
lIdx, _ := c.LowerBound(l)
rIdx, _ := c.LowerBound(r)
ret := uint64(0)
for i := lIdx; i < rIdx; i++ {
ret += c.TopN[i].Count
}
return ret
}
// Sort sorts the topn items.
func (c *TopN) Sort() {
if c == nil {
return
}
sort.Slice(c.TopN, func(i, j int) bool {
return bytes.Compare(c.TopN[i].Encoded, c.TopN[j].Encoded) < 0
})
}
// TotalCount returns how many data is stored in TopN.
func (c *TopN) TotalCount() uint64 {
if c == nil {
return 0
}
total := uint64(0)
for _, t := range c.TopN {
total += t.Count
}
return total
}
// Equal checks whether the two TopN are equal.
func (c *TopN) Equal(cc *TopN) bool {
if c.TotalCount() == 0 && cc.TotalCount() == 0 {
return true
} else if c.TotalCount() != cc.TotalCount() {
return false
}
if len(c.TopN) != len(cc.TopN) {
return false
}
for i := range c.TopN {
if !bytes.Equal(c.TopN[i].Encoded, cc.TopN[i].Encoded) {
return false
}
if c.TopN[i].Count != cc.TopN[i].Count {
return false
}
}
return true
}
// RemoveVal remove the val from TopN if it exists.
func (c *TopN) RemoveVal(val []byte) {
if c == nil {
return
}
pos := c.findTopN(val)
if pos == -1 {
return
}
c.TopN = append(c.TopN[:pos], c.TopN[pos+1:]...)
}
// NewTopN creates the new TopN struct by the given size.
func NewTopN(n int) *TopN {
return &TopN{TopN: make([]TopNMeta, 0, n)}
}
// MergePartTopN2GlobalTopN is used to merge the partition-level topN to global-level topN.
// The input parameters:
// 1. `topNs` are the partition-level topNs to be merged.
// 2. `n` is the size of the global-level topN. Notice: This value can be 0 and has no default value, we must explicitly specify this value.
// 3. `hists` are the partition-level histograms. Some values not in topN may be placed in the histogram. We need it here to make the value in the global-level TopN more accurate.
// The output parameters:
// 1. `*TopN` is the final global-level topN.
// 2. `[]TopNMeta` is the left topN value from the partition-level TopNs, but is not placed to global-level TopN. We should put them back to histogram latter.
// 3. `[]*Histogram` are the partition-level histograms which just delete some values when we merge the global-level topN.
func MergePartTopN2GlobalTopN(sc *stmtctx.StatementContext, version int, topNs []*TopN, n uint32, hists []*Histogram, isIndex bool) (*TopN, []TopNMeta, []*Histogram, error) {
if checkEmptyTopNs(topNs) {
return nil, nil, hists, nil
}
partNum := len(topNs)
topNsNum := make([]int, partNum)
removeVals := make([][]TopNMeta, partNum)
for i, topN := range topNs {
if topN == nil {
topNsNum[i] = 0
continue
}
topNsNum[i] = len(topN.TopN)
}
// Different TopN structures may hold the same value, we have to merge them.
counter := make(map[hack.MutableString]float64)
// datumMap is used to store the mapping from the string type to datum type.
// The datum is used to find the value in the histogram.
datumMap := make(map[hack.MutableString]types.Datum)
for i, topN := range topNs {
if topN.TotalCount() == 0 {
continue
}
for _, val := range topN.TopN {
encodedVal := hack.String(val.Encoded)
_, exists := counter[encodedVal]
counter[encodedVal] += float64(val.Count)
if exists {
// We have already calculated the encodedVal from the histogram, so just continue to next topN value.
continue
}
// We need to check whether the value corresponding to encodedVal is contained in other partition-level stats.
// 1. Check the topN first.
// 2. If the topN doesn't contain the value corresponding to encodedVal. We should check the histogram.
for j := 0; j < partNum; j++ {
if (j == i && version >= 2) || topNs[j].findTopN(val.Encoded) != -1 {
continue
}
// Get the encodedVal from the hists[j]
datum, exists := datumMap[encodedVal]
if !exists {
// If the datumMap does not have the encodedVal datum,
// we should generate the datum based on the encoded value.
// This part is copied from the function MergePartitionHist2GlobalHist.
var d types.Datum
if isIndex {
d.SetBytes(val.Encoded)
} else {
var err error
if types.IsTypeTime(hists[0].Tp.Tp) {
// handle datetime values specially since they are encoded to int and we'll get int values if using DecodeOne.
_, d, err = codec.DecodeAsDateTime(val.Encoded, hists[0].Tp.Tp, sc.TimeZone)
} else {
_, d, err = codec.DecodeOne(val.Encoded)
}
if err != nil {
return nil, nil, nil, err
}
}
datumMap[encodedVal] = d
datum = d
}
// Get the row count which the value is equal to the encodedVal from histogram.
count, _ := hists[j].equalRowCount(datum, isIndex)
if count != 0 {
counter[encodedVal] += count
// Remove the value corresponding to encodedVal from the histogram.
removeVals[j] = append(removeVals[j], TopNMeta{Encoded: datum.GetBytes(), Count: uint64(count)})
}
}
}
}
// Remove the value from the Hists.
for i := 0; i < partNum; i++ {
if len(removeVals[i]) > 0 {
tmp := removeVals[i]
sort.Slice(tmp, func(i, j int) bool {
cmpResult := bytes.Compare(tmp[i].Encoded, tmp[j].Encoded)
return cmpResult < 0
})
hists[i].RemoveVals(tmp)
}
}
numTop := len(counter)
if numTop == 0 {
return nil, nil, hists, nil
}
sorted := make([]TopNMeta, 0, numTop)
for value, cnt := range counter {
data := hack.Slice(string(value))
sorted = append(sorted, TopNMeta{Encoded: data, Count: uint64(cnt)})
}
globalTopN, leftTopN := getMergedTopNFromSortedSlice(sorted, n)
return globalTopN, leftTopN, hists, nil
}
// MergeTopN is used to merge more TopN structures to generate a new TopN struct by the given size.
// The input parameters are multiple TopN structures to be merged and the size of the new TopN that will be generated.
// The output parameters are the newly generated TopN structure and the remaining numbers.
// Notice: The n can be 0. So n has no default value, we must explicitly specify this value.
func MergeTopN(topNs []*TopN, n uint32) (*TopN, []TopNMeta) {
if checkEmptyTopNs(topNs) {
return nil, nil
}
// Different TopN structures may hold the same value, we have to merge them.
counter := make(map[hack.MutableString]uint64)
for _, topN := range topNs {
if topN.TotalCount() == 0 {
continue
}
for _, val := range topN.TopN {
counter[hack.String(val.Encoded)] += val.Count
}
}
numTop := len(counter)
if numTop == 0 {
return nil, nil
}
sorted := make([]TopNMeta, 0, numTop)
for value, cnt := range counter {
data := hack.Slice(string(value))
sorted = append(sorted, TopNMeta{Encoded: data, Count: cnt})
}
return getMergedTopNFromSortedSlice(sorted, n)
}
func checkEmptyTopNs(topNs []*TopN) bool {
count := uint64(0)
for _, topN := range topNs {
count += topN.TotalCount()
}
return count == 0
}
func getMergedTopNFromSortedSlice(sorted []TopNMeta, n uint32) (*TopN, []TopNMeta) {
sort.Slice(sorted, func(i, j int) bool {
if sorted[i].Count != sorted[j].Count {
return sorted[i].Count > sorted[j].Count
}
return bytes.Compare(sorted[i].Encoded, sorted[j].Encoded) < 0
})
n = mathutil.MinUint32(uint32(len(sorted)), n)
var finalTopN TopN
finalTopN.TopN = sorted[:n]
finalTopN.Sort()
return &finalTopN, sorted[n:]
}