forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeedback.go
1063 lines (999 loc) · 33 KB
/
feedback.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2018 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"bytes"
"encoding/gob"
"math"
"math/rand"
"sort"
"time"
"github.com/cznic/mathutil"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/log"
"github.com/pingcap/parser/mysql"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/sessionctx/variable"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/logutil"
"github.com/pingcap/tidb/util/ranger"
"go.uber.org/atomic"
"go.uber.org/zap"
)
// Feedback represents the total scan count in range [lower, upper).
type Feedback struct {
Lower *types.Datum
Upper *types.Datum
Count int64
Repeat int64
Ndv int64
}
// QueryFeedback is used to represent the query feedback info. It contains the query's scan ranges and number of rows
// in each range.
type QueryFeedback struct {
PhysicalID int64
Hist *Histogram
Tp int
Feedback []Feedback
Expected int64 // Expected is the Expected scan count of corresponding query.
actual int64 // actual is the actual scan count of corresponding query.
Valid bool // Valid represents the whether this query feedback is still Valid.
desc bool // desc represents the corresponding query is desc scan.
}
// NewQueryFeedback returns a new query feedback.
func NewQueryFeedback(physicalID int64, hist *Histogram, expected int64, desc bool) *QueryFeedback {
if hist != nil && hist.Len() == 0 {
hist = nil
}
tp := PkType
if hist != nil && hist.IsIndexHist() {
tp = IndexType
}
return &QueryFeedback{
PhysicalID: physicalID,
Valid: true,
Tp: tp,
Hist: hist,
Expected: expected,
desc: desc,
}
}
// QueryFeedbackKey is the key for a group of feedbacks on the same index/column.
type QueryFeedbackKey struct {
PhysicalID int64
HistID int64
Tp int
}
// QueryFeedbackMap is the collection of feedbacks.
type QueryFeedbackMap struct {
Size int
Feedbacks map[QueryFeedbackKey][]*QueryFeedback
}
// NewQueryFeedbackMap builds a feedback collection.
func NewQueryFeedbackMap() *QueryFeedbackMap {
return &QueryFeedbackMap{Feedbacks: make(map[QueryFeedbackKey][]*QueryFeedback)}
}
// Append adds a feedback into map.
func (m *QueryFeedbackMap) Append(q *QueryFeedback) {
k := QueryFeedbackKey{
PhysicalID: q.PhysicalID,
HistID: q.Hist.ID,
Tp: q.Tp,
}
m.append(k, []*QueryFeedback{q})
}
// MaxQueryFeedbackCount is the max number of feedbacks that are cached in memory.
var MaxQueryFeedbackCount = atomic.NewInt64(1 << 9)
func (m *QueryFeedbackMap) append(k QueryFeedbackKey, qs []*QueryFeedback) bool {
remained := MaxQueryFeedbackCount.Load() - int64(m.Size)
if remained <= 0 {
return false
}
s, ok := m.Feedbacks[k]
if !ok || s == nil {
s = make([]*QueryFeedback, 0, 8)
}
l := mathutil.MinInt64(int64(len(qs)), remained)
s = append(s, qs[:l]...)
m.Feedbacks[k] = s
m.Size = m.Size + int(l)
return true
}
// Merge combines 2 collections of feedbacks.
func (m *QueryFeedbackMap) Merge(r *QueryFeedbackMap) {
for k, qs := range r.Feedbacks {
if !m.append(k, qs) {
break
}
}
}
var (
// MaxNumberOfRanges is the max number of ranges before split to collect feedback.
MaxNumberOfRanges = 20
// FeedbackProbability is the probability to collect the feedback.
FeedbackProbability = atomic.NewFloat64(0)
)
func init() {
// This is for solving import cycle.
// We need to read the value of FeedbackProbability when setting the variable tidb_analyze_version in sessionctx/variable package
// but we have imported sessionctx/variable in statistics package here.
variable.FeedbackProbability = FeedbackProbability
}
// CalcErrorRate calculates the error rate the current QueryFeedback.
func (q *QueryFeedback) CalcErrorRate() float64 {
expected := float64(q.Expected)
if q.actual == 0 {
if expected == 0 {
return 0
}
return 1
}
return math.Abs(expected-float64(q.actual)) / float64(q.actual)
}
// CollectFeedback decides whether to collect the feedback. It returns false when:
// 1: the feedback is not generated by select query;
// 2: the histogram is nil or has no buckets;
// 3: the number of scan ranges exceeds the limit because it may affect the performance;
// 4: it does not pass the probabilistic sampler.
func CollectFeedback(sc *stmtctx.StatementContext, q *QueryFeedback, numOfRanges int) bool {
if !sc.InSelectStmt {
return false
}
if q.Hist == nil || q.Hist.Len() == 0 {
return false
}
if numOfRanges > MaxNumberOfRanges || rand.Float64() > FeedbackProbability.Load() {
return false
}
return true
}
// DecodeToRanges decode the feedback to ranges.
func (q *QueryFeedback) DecodeToRanges(isIndex bool) ([]*ranger.Range, error) {
ranges := make([]*ranger.Range, 0, len(q.Feedback))
for _, val := range q.Feedback {
low, high := *val.Lower, *val.Upper
var lowVal, highVal []types.Datum
if isIndex {
var err error
// As we do not know the origin length, just use a custom value here.
lowVal, _, err = codec.DecodeRange(low.GetBytes(), 4, nil, nil)
if err != nil {
return nil, errors.Trace(err)
}
highVal, _, err = codec.DecodeRange(high.GetBytes(), 4, nil, nil)
if err != nil {
return nil, errors.Trace(err)
}
} else {
_, lowInt, err := codec.DecodeInt(val.Lower.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
_, highInt, err := codec.DecodeInt(val.Upper.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
lowVal = []types.Datum{types.NewIntDatum(lowInt)}
highVal = []types.Datum{types.NewIntDatum(highInt)}
}
ranges = append(ranges, &(ranger.Range{
LowVal: lowVal,
HighVal: highVal,
HighExclude: true,
}))
}
return ranges, nil
}
// DecodeIntValues is called when the current Feedback stores encoded int values.
func (q *QueryFeedback) DecodeIntValues() *QueryFeedback {
nq := &QueryFeedback{}
nq.Feedback = make([]Feedback, 0, len(q.Feedback))
for _, fb := range q.Feedback {
_, lowInt, err := codec.DecodeInt(fb.Lower.GetBytes())
if err != nil {
logutil.BgLogger().Debug("decode feedback lower bound value to integer failed", zap.Binary("value", fb.Lower.GetBytes()), zap.Error(err))
continue
}
_, highInt, err := codec.DecodeInt(fb.Upper.GetBytes())
if err != nil {
logutil.BgLogger().Debug("decode feedback upper bound value to integer failed", zap.Binary("value", fb.Upper.GetBytes()), zap.Error(err))
continue
}
low, high := types.NewIntDatum(lowInt), types.NewIntDatum(highInt)
nq.Feedback = append(nq.Feedback, Feedback{Lower: &low, Upper: &high, Count: fb.Count})
}
return nq
}
// StoreRanges stores the ranges for update.
func (q *QueryFeedback) StoreRanges(ranges []*ranger.Range) {
q.Feedback = make([]Feedback, 0, len(ranges))
for _, ran := range ranges {
q.Feedback = append(q.Feedback, Feedback{&ran.LowVal[0], &ran.HighVal[0], 0, 0, 0})
}
}
// Invalidate is used to invalidate the query feedback.
func (q *QueryFeedback) Invalidate() {
q.Feedback = nil
q.Hist = nil
q.Valid = false
q.actual = -1
}
// Actual gets the actual row count.
func (q *QueryFeedback) Actual() int64 {
if !q.Valid {
return -1
}
return q.actual
}
// Update updates the query feedback. `startKey` is the start scan key of the partial result, used to find
// the range for update. `counts` is the scan counts of each range, used to update the feedback count info.
func (q *QueryFeedback) Update(startKey kv.Key, counts, ndvs []int64) {
failpoint.Inject("feedbackNoNDVCollect", func() {
ndvs = nil
})
// Older versions do not have the counts info.
if len(counts) == 0 {
q.Invalidate()
return
}
sum := int64(0)
for _, count := range counts {
sum += count
}
metrics.DistSQLScanKeysPartialHistogram.Observe(float64(sum))
q.actual += sum
if !q.Valid || q.Hist == nil {
return
}
if q.Tp == IndexType {
startKey = tablecodec.CutIndexPrefix(startKey)
} else {
startKey = tablecodec.CutRowKeyPrefix(startKey)
}
// Find the range that startKey falls in.
idx := sort.Search(len(q.Feedback), func(i int) bool {
return bytes.Compare(q.Feedback[i].Lower.GetBytes(), startKey) > 0
})
idx--
if idx < 0 {
return
}
// If the desc is true, the counts is reversed, so here we need to reverse it back.
if q.desc {
for i := 0; i < len(counts)/2; i++ {
j := len(counts) - i - 1
counts[i], counts[j] = counts[j], counts[i]
}
for i := 0; i < len(ndvs)/2; i++ {
j := len(ndvs) - i - 1
ndvs[i], ndvs[j] = ndvs[j], ndvs[i]
}
}
// Update the feedback count info.
for i, count := range counts {
if i+idx >= len(q.Feedback) {
q.Invalidate()
break
}
q.Feedback[i+idx].Count += count
}
for i, ndv := range ndvs {
q.Feedback[i+idx].Ndv += ndv
}
}
// NonOverlappedFeedbacks extracts a set of feedbacks which are not overlapped with each other.
func NonOverlappedFeedbacks(sc *stmtctx.StatementContext, fbs []Feedback) ([]Feedback, bool) {
// Sort feedbacks by end point and start point incrementally, then pick every feedback that is not overlapped
// with the previous chosen feedbacks.
var existsErr bool
sort.Slice(fbs, func(i, j int) bool {
res, err := fbs[i].Upper.CompareDatum(sc, fbs[j].Upper)
if err != nil {
existsErr = true
}
if existsErr || res != 0 {
return res < 0
}
res, err = fbs[i].Lower.CompareDatum(sc, fbs[j].Lower)
if err != nil {
existsErr = true
}
return res < 0
})
if existsErr {
return fbs, false
}
resFBs := make([]Feedback, 0, len(fbs))
previousEnd := &types.Datum{}
for _, fb := range fbs {
res, err := previousEnd.CompareDatum(sc, fb.Lower)
if err != nil {
return fbs, false
}
if res <= 0 {
resFBs = append(resFBs, fb)
previousEnd = fb.Upper
}
}
return resFBs, true
}
// BucketFeedback stands for all the feedback for a bucket.
type BucketFeedback struct {
feedback []Feedback // All the feedback info in the same bucket.
lower *types.Datum // The lower bound of the new bucket.
upper *types.Datum // The upper bound of the new bucket.
}
// outOfRange checks if the `val` is between `min` and `max`.
func outOfRange(sc *stmtctx.StatementContext, min, max, val *types.Datum) (int, error) {
result, err := val.CompareDatum(sc, min)
if err != nil {
return 0, err
}
if result < 0 {
return result, nil
}
result, err = val.CompareDatum(sc, max)
if err != nil {
return 0, err
}
if result > 0 {
return result, nil
}
return 0, nil
}
// adjustFeedbackBoundaries adjust the feedback boundaries according to the `min` and `max`.
// If the feedback has no intersection with `min` and `max`, we could just skip this feedback.
func (f *Feedback) adjustFeedbackBoundaries(sc *stmtctx.StatementContext, min, max *types.Datum) (bool, error) {
result, err := outOfRange(sc, min, max, f.Lower)
if err != nil {
return false, err
}
if result > 0 {
return true, nil
}
if result < 0 {
f.Lower = min
}
result, err = outOfRange(sc, min, max, f.Upper)
if err != nil {
return false, err
}
if result < 0 {
return true, nil
}
if result > 0 {
f.Upper = max
}
return false, nil
}
// buildBucketFeedback build the feedback for each bucket from the histogram feedback.
func buildBucketFeedback(h *Histogram, feedback *QueryFeedback) (map[int]*BucketFeedback, int) {
bktID2FB := make(map[int]*BucketFeedback)
if len(feedback.Feedback) == 0 {
return bktID2FB, 0
}
total := 0
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
min, max := types.GetMinValue(h.Tp), types.GetMaxValue(h.Tp)
for _, fb := range feedback.Feedback {
skip, err := fb.adjustFeedbackBoundaries(sc, &min, &max)
if err != nil {
logutil.BgLogger().Debug("adjust feedback boundaries failed", zap.Error(err))
continue
}
if skip {
continue
}
idx := h.Bounds.UpperBound(0, fb.Lower)
bktIdx := 0
// The last bucket also stores the feedback that falls outside the upper bound.
if idx >= h.Bounds.NumRows()-1 {
bktIdx = h.Len() - 1
} else if h.Len() == 1 {
bktIdx = 0
} else {
if idx == 0 {
bktIdx = 0
} else {
bktIdx = (idx - 1) / 2
}
// Make sure that this feedback lies within the bucket.
if chunk.Compare(h.Bounds.GetRow(2*(bktIdx+1)), 0, fb.Upper) < 0 {
continue
}
}
total++
bkt := bktID2FB[bktIdx]
if bkt == nil {
bkt = &BucketFeedback{lower: h.GetLower(bktIdx), upper: h.GetUpper(bktIdx)}
bktID2FB[bktIdx] = bkt
}
bkt.feedback = append(bkt.feedback, fb)
// Update the bound if necessary.
res, err := bkt.lower.CompareDatum(nil, fb.Lower)
if err != nil {
logutil.BgLogger().Debug("compare datum failed", zap.Any("value1", bkt.lower), zap.Any("value2", fb.Lower), zap.Error(err))
continue
}
if res > 0 {
bkt.lower = fb.Lower
}
res, err = bkt.upper.CompareDatum(nil, fb.Upper)
if err != nil {
logutil.BgLogger().Debug("compare datum failed", zap.Any("value1", bkt.upper), zap.Any("value2", fb.Upper), zap.Error(err))
continue
}
if res < 0 {
bkt.upper = fb.Upper
}
}
return bktID2FB, total
}
// getBoundaries gets the new boundaries after split.
func (b *BucketFeedback) getBoundaries(num int) []types.Datum {
// Get all the possible new boundaries.
vals := make([]types.Datum, 0, len(b.feedback)*2+2)
for _, fb := range b.feedback {
vals = append(vals, *fb.Lower, *fb.Upper)
}
vals = append(vals, *b.lower)
err := types.SortDatums(nil, vals)
if err != nil {
logutil.BgLogger().Debug("sort datums failed", zap.Error(err))
return []types.Datum{*b.lower, *b.upper}
}
total, interval := 0, len(vals)/num
// Pick values per `interval`.
for i := 0; i < len(vals); i, total = i+interval, total+1 {
vals[total] = vals[i]
}
// Append the upper bound.
vals[total] = *b.upper
vals = vals[:total+1]
total = 1
// Erase the repeat values.
for i := 1; i < len(vals); i++ {
cmp, err := vals[total-1].CompareDatum(nil, &vals[i])
if err != nil {
logutil.BgLogger().Debug("compare datum failed", zap.Any("value1", vals[total-1]), zap.Any("value2", vals[i]), zap.Error(err))
continue
}
if cmp == 0 {
continue
}
vals[total] = vals[i]
total++
}
return vals[:total]
}
// There are only two types of datum in bucket: one is `Blob`, which is for index; the other one
// is `Int`, which is for primary key.
type bucket = Feedback
// splitBucket firstly splits this "BucketFeedback" to "newNumBkts" new buckets,
// calculates the count for each new bucket, merge the new bucket whose count
// is smaller than "minBucketFraction*totalCount" with the next new bucket
// until the last new bucket.
func (b *BucketFeedback) splitBucket(newNumBkts int, totalCount float64, originBucketCount float64, originalNdv int64) []bucket {
// Split the bucket.
bounds := b.getBoundaries(newNumBkts + 1)
bkts := make([]bucket, 0, len(bounds)-1)
sc := &stmtctx.StatementContext{TimeZone: time.UTC}
for i := 1; i < len(bounds); i++ {
newBkt := bucket{&bounds[i-1], bounds[i].Clone(), 0, 0, 0}
// get bucket count
_, ratio := getOverlapFraction(Feedback{b.lower, b.upper, int64(originBucketCount), 0, 0}, newBkt)
countInNewBkt := originBucketCount * ratio
ndvInNewBkt := int64(float64(originalNdv) * ratio)
countInNewBkt, ndvInNewBkt = b.refineBucketCount(sc, newBkt, countInNewBkt, ndvInNewBkt)
// do not split if the count of result bucket is too small.
if countInNewBkt < minBucketFraction*totalCount {
bounds[i] = bounds[i-1]
continue
}
newBkt.Count = int64(countInNewBkt)
newBkt.Ndv = ndvInNewBkt
bkts = append(bkts, newBkt)
// To guarantee that each bucket's range will not overlap.
setNextValue(&bounds[i])
}
return bkts
}
// getOverlapFraction gets the overlap fraction of feedback and bucket range. In order to get the bucket count, it also
// returns the ratio between bucket fraction and feedback fraction.
func getOverlapFraction(fb Feedback, bkt bucket) (float64, float64) {
datums := make([]types.Datum, 0, 4)
datums = append(datums, *fb.Lower, *fb.Upper)
datums = append(datums, *bkt.Lower, *bkt.Upper)
err := types.SortDatums(nil, datums)
if err != nil {
return 0, 0
}
minValue, maxValue := &datums[0], &datums[3]
fbLower := calcFraction4Datums(minValue, maxValue, fb.Lower)
fbUpper := calcFraction4Datums(minValue, maxValue, fb.Upper)
bktLower := calcFraction4Datums(minValue, maxValue, bkt.Lower)
bktUpper := calcFraction4Datums(minValue, maxValue, bkt.Upper)
ratio := (bktUpper - bktLower) / (fbUpper - fbLower)
// full overlap
if fbLower <= bktLower && bktUpper <= fbUpper {
return bktUpper - bktLower, ratio
}
if bktLower <= fbLower && fbUpper <= bktUpper {
return fbUpper - fbLower, ratio
}
// partial overlap
overlap := math.Min(bktUpper-fbLower, fbUpper-bktLower)
return overlap, ratio
}
// mergeFullyContainedFeedback merges the max fraction of non-overlapped feedbacks that are fully contained in the bucket.
func (b *BucketFeedback) mergeFullyContainedFeedback(sc *stmtctx.StatementContext, bkt bucket) (float64, float64, int64, bool) {
feedbacks := make([]Feedback, 0, len(b.feedback))
// Get all the fully contained feedbacks.
for _, fb := range b.feedback {
res, err := outOfRange(sc, bkt.Lower, bkt.Upper, fb.Lower)
if res != 0 || err != nil {
return 0, 0, 0, false
}
res, err = outOfRange(sc, bkt.Lower, bkt.Upper, fb.Upper)
if res != 0 || err != nil {
return 0, 0, 0, false
}
feedbacks = append(feedbacks, fb)
}
if len(feedbacks) == 0 {
return 0, 0, 0, false
}
sortedFBs, ok := NonOverlappedFeedbacks(sc, feedbacks)
if !ok {
return 0, 0, 0, false
}
var (
sumFraction, sumCount float64
ndv int64
)
for _, fb := range sortedFBs {
fraction, _ := getOverlapFraction(fb, bkt)
sumFraction += fraction
sumCount += float64(fb.Count)
ndv += fb.Ndv
}
return sumFraction, sumCount, ndv, true
}
// refineBucketCount refine the newly split bucket count. It uses the feedback that overlaps most
// with the bucket to get the bucket count.
func (b *BucketFeedback) refineBucketCount(sc *stmtctx.StatementContext, bkt bucket, defaultCount float64, defaultNdv int64) (float64, int64) {
bestFraction := minBucketFraction
count := defaultCount
ndv := defaultNdv
sumFraction, sumCount, sumNdv, ok := b.mergeFullyContainedFeedback(sc, bkt)
if ok && sumFraction > bestFraction {
bestFraction = sumFraction
count = sumCount / sumFraction
ndv = int64(float64(sumNdv) / sumFraction)
}
for _, fb := range b.feedback {
fraction, ratio := getOverlapFraction(fb, bkt)
// choose the max overlap fraction
if fraction > bestFraction {
bestFraction = fraction
count = float64(fb.Count) * ratio
ndv = int64(float64(fb.Ndv) * ratio)
}
}
return count, ndv
}
const (
defaultSplitCount = 10
splitPerFeedback = 10
)
// getSplitCount gets the split count for the histogram. It is based on the intuition that:
// 1: If we have more remaining unused buckets, we can split more.
// 2: We cannot split too aggressive, thus we make it split every `splitPerFeedback`.
func getSplitCount(numFeedbacks, remainBuckets int) int {
// Split more if have more buckets available.
splitCount := mathutil.Max(remainBuckets, defaultSplitCount)
return mathutil.Min(splitCount, numFeedbacks/splitPerFeedback)
}
type bucketScore struct {
id int
score float64
}
type bucketScores []bucketScore
func (bs bucketScores) Len() int { return len(bs) }
func (bs bucketScores) Swap(i, j int) { bs[i], bs[j] = bs[j], bs[i] }
func (bs bucketScores) Less(i, j int) bool { return bs[i].score < bs[j].score }
const (
// To avoid the histogram been too imbalanced, we constrain the count of a bucket in range
// [minBucketFraction * totalCount, maxBucketFraction * totalCount].
minBucketFraction = 1 / 10000.0
maxBucketFraction = 1 / 10.0
)
// getBucketScore gets the score for merge this bucket with previous one.
// TODO: We also need to consider the bucket hit count.
func getBucketScore(bkts []bucket, totalCount float64, id int) bucketScore {
preCount, count := float64(bkts[id-1].Count), float64(bkts[id].Count)
// do not merge if the result bucket is too large
if (preCount + count) > maxBucketFraction*totalCount {
return bucketScore{id, math.MaxFloat64}
}
// Merge them if the result bucket is already too small.
if (preCount + count) < minBucketFraction*totalCount {
return bucketScore{id, 0}
}
low, mid, high := bkts[id-1].Lower, bkts[id-1].Upper, bkts[id].Upper
// If we choose to merge, err is the absolute estimate error for the previous bucket.
err := calcFraction4Datums(low, high, mid)*(preCount+count) - preCount
return bucketScore{id, math.Abs(err / (preCount + count))}
}
// defaultBucketCount is the number of buckets a column histogram has.
var defaultBucketCount = 256
func mergeBuckets(bkts []bucket, isNewBuckets []bool, totalCount float64) []bucket {
mergeCount := len(bkts) - defaultBucketCount
if mergeCount <= 0 {
return bkts
}
bs := make(bucketScores, 0, len(bkts))
for i := 1; i < len(bkts); i++ {
// Do not merge the newly created buckets.
if !isNewBuckets[i] && !isNewBuckets[i-1] {
bs = append(bs, getBucketScore(bkts, totalCount, i))
}
}
sort.Sort(bs)
ids := make([]int, 0, mergeCount)
for i := 0; i < mergeCount; i++ {
ids = append(ids, bs[i].id)
}
sort.Ints(ids)
idCursor, bktCursor := 0, 0
for i := range bkts {
// Merge this bucket with last one.
if idCursor < mergeCount && ids[idCursor] == i {
bkts[bktCursor-1].Upper = bkts[i].Upper
bkts[bktCursor-1].Count += bkts[i].Count
bkts[bktCursor-1].Repeat = bkts[i].Repeat
bkts[bktCursor-1].Ndv += bkts[i].Ndv
idCursor++
} else {
bkts[bktCursor] = bkts[i]
bktCursor++
}
}
bkts = bkts[:bktCursor]
return bkts
}
// splitBuckets split the histogram buckets according to the feedback.
func splitBuckets(h *Histogram, feedback *QueryFeedback) ([]bucket, []bool, int64) {
bktID2FB, numTotalFBs := buildBucketFeedback(h, feedback)
buckets := make([]bucket, 0, h.Len())
isNewBuckets := make([]bool, 0, h.Len())
splitCount := getSplitCount(numTotalFBs, defaultBucketCount-h.Len())
for i := 0; i < h.Len(); i++ {
bktFB, ok := bktID2FB[i]
// No feedback, just use the original one.
if !ok {
buckets = append(buckets, bucket{h.GetLower(i), h.GetUpper(i), h.bucketCount(i), h.Buckets[i].Repeat, h.Buckets[i].NDV})
isNewBuckets = append(isNewBuckets, false)
continue
}
// Distribute the total split count to bucket based on number of bucket feedback.
newBktNums := splitCount * len(bktFB.feedback) / numTotalFBs
bkts := bktFB.splitBucket(newBktNums, h.TotalRowCount(), float64(h.bucketCount(i)), h.Buckets[i].NDV)
buckets = append(buckets, bkts...)
if len(bkts) == 1 {
isNewBuckets = append(isNewBuckets, false)
} else {
for i := 0; i < len(bkts); i++ {
isNewBuckets = append(isNewBuckets, true)
}
}
}
totCount := int64(0)
for _, bkt := range buckets {
totCount += bkt.Count
}
return buckets, isNewBuckets, totCount
}
// UpdateHistogram updates the histogram according buckets.
func UpdateHistogram(h *Histogram, feedback *QueryFeedback, statsVer int) *Histogram {
if statsVer < Version2 {
// If it's the stats we haven't maintain the bucket NDV yet. Reset the ndv.
for i := range feedback.Feedback {
feedback.Feedback[i].Ndv = 0
}
}
buckets, isNewBuckets, totalCount := splitBuckets(h, feedback)
buckets = mergeBuckets(buckets, isNewBuckets, float64(totalCount))
hist := buildNewHistogram(h, buckets)
// Update the NDV of primary key column.
if feedback.Tp == PkType {
hist.NDV = int64(hist.TotalRowCount())
// If we maintained the NDV of bucket. We can also update the total ndv.
} else if feedback.Tp == IndexType && statsVer == 2 {
totNdv := int64(0)
for _, bkt := range buckets {
totNdv += bkt.Ndv
}
hist.NDV = totNdv
}
return hist
}
// UpdateCMSketchAndTopN updates the CMSketch and TopN by feedback.
func UpdateCMSketchAndTopN(c *CMSketch, t *TopN, eqFeedbacks []Feedback) (*CMSketch, *TopN) {
if c == nil || len(eqFeedbacks) == 0 {
return c, t
}
newCMSketch := c.Copy()
newTopN := t.Copy()
for _, fb := range eqFeedbacks {
updateValueBytes(newCMSketch, newTopN, fb.Lower.GetBytes(), uint64(fb.Count))
}
return newCMSketch, newTopN
}
func buildNewHistogram(h *Histogram, buckets []bucket) *Histogram {
hist := NewHistogram(h.ID, h.NDV, h.NullCount, h.LastUpdateVersion, h.Tp, len(buckets), h.TotColSize)
preCount := int64(0)
for _, bkt := range buckets {
hist.AppendBucketWithNDV(bkt.Lower, bkt.Upper, bkt.Count+preCount, bkt.Repeat, bkt.Ndv)
preCount += bkt.Count
}
return hist
}
// queryFeedback is used to serialize the QueryFeedback.
type queryFeedback struct {
IntRanges []int64
// HashValues is the murmur hash values for each index point.
// Note that index points will be stored in `IndexPoints`, we keep it here only for compatibility.
HashValues []uint64
IndexRanges [][]byte
// IndexPoints stores the value of each equal condition.
IndexPoints [][]byte
// Counts is the number of scan keys in each range. It first stores the count for `IntRanges`, `IndexRanges` or `ColumnRanges`.
// After that, it stores the Ranges for `HashValues`.
Counts []int64
ColumnRanges [][]byte
Ndvs []int64
}
func encodePKFeedback(q *QueryFeedback) (*queryFeedback, error) {
pb := &queryFeedback{}
for _, fb := range q.Feedback {
// There is no need to update the point queries.
if bytes.Compare(kv.Key(fb.Lower.GetBytes()).PrefixNext(), fb.Upper.GetBytes()) >= 0 {
continue
}
_, low, err := codec.DecodeInt(fb.Lower.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
_, high, err := codec.DecodeInt(fb.Upper.GetBytes())
if err != nil {
return nil, errors.Trace(err)
}
pb.IntRanges = append(pb.IntRanges, low, high)
pb.Counts = append(pb.Counts, fb.Count)
pb.Ndvs = append(pb.Ndvs, fb.Ndv)
}
return pb, nil
}
func encodeIndexFeedback(q *QueryFeedback) *queryFeedback {
pb := &queryFeedback{}
var pointCounts []int64
for _, fb := range q.Feedback {
if bytes.Compare(kv.Key(fb.Lower.GetBytes()).PrefixNext(), fb.Upper.GetBytes()) >= 0 {
pb.IndexPoints = append(pb.IndexPoints, fb.Lower.GetBytes())
pointCounts = append(pointCounts, fb.Count)
pb.Ndvs = append(pb.Ndvs, fb.Ndv)
} else {
pb.IndexRanges = append(pb.IndexRanges, fb.Lower.GetBytes(), fb.Upper.GetBytes())
pb.Counts = append(pb.Counts, fb.Count)
pb.Ndvs = append(pb.Ndvs, fb.Ndv)
}
}
pb.Counts = append(pb.Counts, pointCounts...)
return pb
}
func encodeColumnFeedback(q *QueryFeedback) (*queryFeedback, error) {
pb := &queryFeedback{}
sc := stmtctx.StatementContext{TimeZone: time.UTC}
for _, fb := range q.Feedback {
lowerBytes, err := codec.EncodeKey(&sc, nil, *fb.Lower)
if err != nil {
return nil, errors.Trace(err)
}
upperBytes, err := codec.EncodeKey(&sc, nil, *fb.Upper)
if err != nil {
return nil, errors.Trace(err)
}
pb.ColumnRanges = append(pb.ColumnRanges, lowerBytes, upperBytes)
pb.Counts = append(pb.Counts, fb.Count)
}
return pb, nil
}
// EncodeFeedback encodes the given feedback to byte slice.
func EncodeFeedback(q *QueryFeedback) ([]byte, error) {
var pb *queryFeedback
var err error
switch q.Tp {
case PkType:
pb, err = encodePKFeedback(q)
case IndexType:
pb = encodeIndexFeedback(q)
case ColType:
pb, err = encodeColumnFeedback(q)
}
if err != nil {
return nil, errors.Trace(err)
}
var buf bytes.Buffer
enc := gob.NewEncoder(&buf)
err = enc.Encode(pb)
return buf.Bytes(), errors.Trace(err)
}
func decodeFeedbackForIndex(q *QueryFeedback, pb *queryFeedback, c *CMSketch, t *TopN) {
q.Tp = IndexType
// decode the index range feedback
for i := 0; i < len(pb.IndexRanges); i += 2 {
lower, upper := types.NewBytesDatum(pb.IndexRanges[i]), types.NewBytesDatum(pb.IndexRanges[i+1])
q.Feedback = append(q.Feedback, Feedback{&lower, &upper, pb.Counts[i/2], 0, pb.Ndvs[i/2]})
}
if c != nil {
// decode the index point feedback, just set value count in CM Sketch
start := len(pb.IndexRanges) / 2
if len(pb.HashValues) > 0 {
for i := 0; i < len(pb.HashValues); i += 2 {
c.setValue(pb.HashValues[i], pb.HashValues[i+1], uint64(pb.Counts[start+i/2]))
}
return
}
for i := 0; i < len(pb.IndexPoints); i++ {
updateValueBytes(c, t, pb.IndexPoints[i], uint64(pb.Counts[start+i]))
}
}
}
func decodeFeedbackForPK(q *QueryFeedback, pb *queryFeedback, isUnsigned bool) {
q.Tp = PkType
// decode feedback for primary key
for i := 0; i < len(pb.IntRanges); i += 2 {
var lower, upper types.Datum
if isUnsigned {
lower.SetUint64(uint64(pb.IntRanges[i]))
upper.SetUint64(uint64(pb.IntRanges[i+1]))
} else {
lower.SetInt64(pb.IntRanges[i])
upper.SetInt64(pb.IntRanges[i+1])
}
q.Feedback = append(q.Feedback, Feedback{&lower, &upper, pb.Counts[i/2], 0, pb.Ndvs[i/2]})
}
}
// ConvertDatumsType converts the datums type to `ft`.
func ConvertDatumsType(vals []types.Datum, ft *types.FieldType, loc *time.Location) error {
for i, val := range vals {
if val.Kind() == types.KindMinNotNull || val.Kind() == types.KindMaxValue {
continue
}
newVal, err := tablecodec.UnflattenDatums([]types.Datum{val}, []*types.FieldType{ft}, loc)
if err != nil {
return err
}
vals[i] = newVal[0]
}
return nil
}
func decodeColumnBounds(data []byte, ft *types.FieldType) ([]types.Datum, error) {
vals, _, err := codec.DecodeRange(data, 1, nil, nil)
if err != nil {
return nil, err
}
err = ConvertDatumsType(vals, ft, time.UTC)
return vals, err
}
func decodeFeedbackForColumn(q *QueryFeedback, pb *queryFeedback, ft *types.FieldType) error {
q.Tp = ColType
for i := 0; i < len(pb.ColumnRanges); i += 2 {
low, err := decodeColumnBounds(pb.ColumnRanges[i], ft)
if err != nil {
return err
}
high, err := decodeColumnBounds(pb.ColumnRanges[i+1], ft)
if err != nil {
return err
}
q.Feedback = append(q.Feedback, Feedback{&low[0], &high[0], pb.Counts[i/2], 0, 0})
}
return nil
}
// DecodeFeedback decodes a byte slice to feedback.
func DecodeFeedback(val []byte, q *QueryFeedback, c *CMSketch, t *TopN, ft *types.FieldType) error {
buf := bytes.NewBuffer(val)
dec := gob.NewDecoder(buf)
pb := &queryFeedback{}
err := dec.Decode(pb)
if err != nil {
return errors.Trace(err)
}
if len(pb.IndexRanges) > 0 || len(pb.HashValues) > 0 || len(pb.IndexPoints) > 0 {
decodeFeedbackForIndex(q, pb, c, t)
} else if len(pb.IntRanges) > 0 {
decodeFeedbackForPK(q, pb, mysql.HasUnsignedFlag(ft.Flag))
} else {
err = decodeFeedbackForColumn(q, pb, ft)
}
return err
}
// SplitFeedbackByQueryType splits the feedbacks into equality feedbacks and range feedbacks.