-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathfind_similar.py
47 lines (43 loc) · 1.51 KB
/
find_similar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from own_db_helpers import load_data
from collections import OrderedDict
def find_my_film(keyword, films_data):
for film in films_data:
if keyword == film['original_title']:
return film
return None
def get_rating(my_film, films_data, num_to_recommend=8):
params = {
'belongs_to_collection': 1000,
'original_language': 300,
'budget': 100,
'genres': 500
}
rating = {}
for film in films_data:
film_rate = 0
for parameter in params:
if film[parameter] == my_film[parameter]:
film_rate += params[parameter]
rating[film['original_title']] = film_rate
del rating[my_film['original_title']]
rating = OrderedDict(sorted(rating.items(), key=lambda t: t[1], reverse=True))
final_recommendation = []
for film in rating:
if len(final_recommendation) > num_to_recommend:
break
final_recommendation.append(film)
return final_recommendation
if __name__ == '__main__':
path = input('Enter path to DataBase:')
films_data = load_data(path)
if not films_data:
print('File not found, sorry...')
raise SystemExit
keyword = input('Enter film to search for:')
my_film = find_my_film(keyword, films_data)
if not my_film:
print('No such film in FilmsDB')
raise SystemExit
recommendation = get_rating(my_film, films_data)
for film in sorted(recommendation):
print(film)