forked from legoodmanner/jukedrummer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lm.py
188 lines (159 loc) · 6.02 KB
/
train_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import pickle
from jukebox.make_models import MODELS
from torchvision.utils import make_grid
from model.LanguageModel import JukeTransformer
from model.vqvae import VQVAE, Sampler
from dataset import *
from jukebox.train import get_optimizer
from hparams import OPT, MODEL_LIST, setup_lm_hparams
def get_dataset(hps):
with open(os.path.join(hps.path, 'dataset.pkl'), 'rb') as f:
dataset = pickle.load(f)
tr_ids = dataset[0]
va_ids = dataset[1]
print(f'number of training data: {len(tr_ids)}')
print(f'number of validation data: {len(va_ids)}')
tr_dataset = BeatInfoPairedDataset(tr_ids, hps)
va_dataset = BeatInfoPairedDataset(va_ids, hps)
tr_dataloader = DataLoader(
dataset=tr_dataset,
batch_size=hps.batch_size,
num_workers=4,
shuffle=True,
drop_last=True,
pin_memory=True
)
va_dataloader = DataLoader(
dataset=va_dataset,
batch_size=hps.batch_size,
num_workers=1,
shuffle=True,
drop_last=True,
pin_memory=True
)
return tr_dataloader, va_dataloader
class Solver():
def __init__(self, model, vqvae, binfo_type, device):
self.device = device
self.model = model
self.vqvae = vqvae
self.binfo_type = binfo_type
self.criterion = nn.CrossEntropyLoss()
self.opt, self.shd, scalar = get_optimizer(self.model, OPT)
def run(self, data, summary, training=True, make_sample=False):
self.opt.zero_grad()
if training:
self.model.train()
else:
self.model.eval()
tgz = data[0].long().to(self.device)
otz = data[1].long().to(self.device)
ot_binfo = data[2].float().to(self.device)
bs, l = tgz.size(0), tgz.size(1)
loss, pred = self.model(tgz, otz, ot_binfo)
summary['train loss' if training else 'valid loss'] = loss.item()
# summary['train prime loss' if training else 'valid prime loss'] = metric[1].item()
if training:
loss.backward()
self.opt.step()
self.shd.step()
if make_sample:
with torch.no_grad():
lr = self.opt.param_groups[0]['lr']
pred_mel = vqvae.decode(torch.argmax(pred, dim=-1))
pred_mel = make_grid(pred_mel[:4].unsqueeze(1), nrow=1).detach().cpu().numpy()
pred_mel = wandb.Image(pred_mel.transpose(1,2,0))
summary[f'{"train" if training else "valid"} pred mel'] = pred_mel
real_mel = vqvae.decode(tgz)
real_mel = make_grid(real_mel[:4].unsqueeze(1), nrow=1).detach().cpu().numpy()
real_mel = wandb.Image(real_mel.transpose(1,2,0))
summary[f'{"train" if training else "valid"} real mel'] = real_mel
return summary
if __name__ == '__main__':
## HPARMAS
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', type=int)
parser.add_argument('--exp_idx', type=int)
parser.add_argument('--resume', action='store_true')
parser.add_argument('--wandb', action='store_true')
parser.add_argument('--bs', type=int, default=None)
args = parser.parse_args()
hps = setup_lm_hparams(MODEL_LIST[args.exp_idx])
if args.bs:
hps.batch_size = args.bs
device = torch.device(f'cuda:{args.cuda}')
print(f'Cuda: {args.cuda}')
print(f'Batch Size: {hps.batch_size}')
print(f'Codebook: {hps.codebook_size}')
print(f'LM enc layers: {hps.enc_layers}')
print(f'LM dec layers: {hps.dec_layers}')
print(f'd model: {hps.d_model}')
print(f'Beat info type: {hps.binfo_type}')
### MODEL
model = JukeTransformer(hps).to(device)
if args.resume:
ckpt = torch.load(
os.path.join(hps.ckpt_dir, 'exp'+str(args.exp_idx)+'.pkl'),
map_location=lambda storage, loc: storage
)
model.load_state_dict(ckpt['model'])
print('resume from previous params...')
vqvae = VQVAE(
codebook_size=hps.codebook_size,
encoder = Sampler(input_dim=80, output_dim=64, z_scale_factors=hps.downsample_ratios),
decoder = Sampler(input_dim=64, output_dim=80, z_scale_factors=hps.upsample_ratios),
)
mean, std = vqvae.restore_from_ckpt(hps, device)
solver = Solver(model, vqvae, hps.binfo_type, device)
### DATA
tr_dataloader, va_dataloader = get_dataset(hps=hps)
### WANDB
try:
import wandb
is_wandb = True if args.wandb else False
except ImportError:
is_wandb = False
if is_wandb:
run = wandb.init(
project='JukeDrummer Language model',
entity='',
config=hps,
dir='./wandb',
name= 'exp'+str(args.exp_idx),
)
### TRAINING
for epoch in range(OPT.epochs):
summary = {}
# train
for idx, data in enumerate(tqdm(tr_dataloader)):
summary = solver.run(
data,
summary,
make_sample= idx==len(tr_dataloader)-1 and epoch % hps.sample_step == 0 #final one
)
# valid
for idx, data in enumerate(tqdm(va_dataloader)):
with torch.no_grad():
summary = solver.run(
data,
training=False,
summary=summary,
make_sample= idx==len(va_dataloader)-1 and epoch % hps.sample_step == 0 #final one
)
#save to wandb
if epoch % hps.sample_step == 0:
torch.save(
{
'model': model.state_dict(),
'hps': dict(hps)
},
os.path.join(hps.ckpt_dir, 'exp'+str(args.exp_idx)+'.pkl'))
print(f"{str(epoch).zfill(4)} | train loss: {summary['train loss']} | valid loss: {summary['valid loss']}")
if is_wandb:
wandb.log(data=summary, step=epoch)