-
-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathtests.rs
494 lines (419 loc) · 22.6 KB
/
tests.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#[cfg(test)]
mod test {
#[cfg(feature = "dim2")]
use na;
#[cfg(feature = "dim2")]
use na::{Vector1, Vector2, Isometry2};
#[cfg(feature = "dim2")]
use ncollide::shape::Cuboid;
#[cfg(feature = "dim2")]
use crate::object::{ActivationState, RigidBody};
#[cfg(feature = "dim2")]
use crate::world::World;
/// Gravity tests
#[cfg(feature = "dim2")]
#[test]
fn gravity2() {
// world
let mut world = World::new();
// rigidbody with side length 2, area 4 and mass 4
let geom = Cuboid::new(Vector2::new(1.0, 1.0));
let rb = RigidBody::new_dynamic(geom, 1.0, 0.3, 0.6);
let rb_handle = world.add_rigid_body(rb.clone());
// ensure it's at the origin
let expected = &Isometry2::new(na::zero(), na::zero());
assert!(na::approx_eq(rb_handle.borrow().position(), expected),
format!("Initial position should be at zero. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// set gravity
let gravity = Vector2::new(0.0, 20.0);
world.set_gravity(gravity);
// remove body and trigger a rust panic
// world.remove_body(&rb_handle2);
// add another body in same position triggers a panic in ncollide
// let mut rb3 = rb.clone();
// rb3.append_translation(&Vector2::new(0.0, 0.0));
// let rb_handle3 = world.add_body(rb3);
// simulate a huge time step
// The result is physically not correct as the acceleration integration
// happens at the beginning of the step and then the body moves with the
// terminal velocity for the entire time duration. Therefore it moves farther
// than it actually should. Use smaller time intervals to approximate more
// realistic values (see below).
let expected = &Isometry2::new(Vector2::new(0.0, 20.0), na::zero());
world.step(1.0);
assert!(na::approx_eq(rb_handle.borrow().position(), expected),
format!("Gravity did not pull object correctly (large time step). Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset the body
rb_handle.borrow_mut().set_lin_vel(Vector2::new(0.0, 0.0));
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
// simulate small time steps
let expected = &Isometry2::new(Vector2::new(0.0, 10.01), na::zero());
for _ in 0 .. 1000 {
world.step(0.001);
}
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Gravity did not pull object correctly (small time steps). Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset the body
rb_handle.borrow_mut().set_lin_vel(Vector2::new(0.0, 20.0));
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
// Switch off gravity globally
let expected = &Isometry2::new(Vector2::new(0.0, 20.0), na::zero());
world.set_gravity(na::zero());
for _ in 0 .. 1000 {
world.step(0.001);
}
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.001),
format!("Gravity did not correctly switch off (global). Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset the body
rb_handle.borrow_mut().set_lin_vel(Vector2::new(0.0, 0.0));
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
// Wait until body deactivates
for _ in 0 .. 1000 {
world.step(0.001);
}
assert!(*rb_handle.borrow().activation_state() == ActivationState::Inactive,
format!("Body should be inactive by now, but is {:?}", rb_handle.borrow().activation_state()));
rb_handle.borrow_mut().activate(1.0);
assert!(*rb_handle.borrow().activation_state() != ActivationState::Inactive,
format!("Body should be active by now, but is {:?}", rb_handle.borrow().activation_state()));
// Changing gravity has to work
let expected = &Isometry2::new(Vector2::new(0.0, 10.0), na::zero());
world.set_gravity(Vector2::new(0.0, 20.0));
for _ in 0 .. 1000 {
world.step(0.001);
}
world.set_gravity(Vector2::new(0.0, -20.0));
for _ in 0 .. 2000 {
world.step(0.001);
}
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.02),
format!("Gravity did not change correctly. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
}
/// Forces tests
#[cfg(feature = "dim2")]
#[test]
fn forces2() {
// world
let mut world = World::new();
// rigidbody with side length 2, area 4 and mass 4
let geom = Cuboid::new(Vector2::new(1.0, 1.0));
let rb = RigidBody::new_dynamic(geom.clone(), 1.0, 0.3, 0.6);
let rb_handle = world.add_rigid_body(rb.clone());
// add another body with double the density
let mut rb2 = RigidBody::new_dynamic(geom.clone(), 2.0, 0.3, 0.6);
rb2.append_translation(&Vector2::new(5.0, 0.0));
let rb_handle2 = world.add_rigid_body(rb2);
// switch off gravity
world.set_gravity(Vector2::new(0.0, 0.0));
// Force has to work for different masses
// apply force
rb_handle.borrow_mut().append_lin_force(Vector2::new(0.0, 10.0));
rb_handle2.borrow_mut().append_lin_force(Vector2::new(0.0, 10.0));
rb_handle.borrow_mut().set_deactivation_threshold(None);
rb_handle2.borrow_mut().set_deactivation_threshold(None);
// simulate
for _ in 0 .. 2000 {
world.step(0.001);
}
// mass of 4 (kg), force of 10 (N) => acc = force/mass = 2.5 (m/s^2)
// distance after 2 secs: x = 1/2 * acc * t^2 = 5 (m)
let expected = &Isometry2::new(Vector2::new(0.0, 5.0), na::zero());
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Force did not properly pull first body. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// mass of 8 (kg), force of 10 (N)=> acc = force/mass = 1.25 (m/s^2)
// distance after 2 secs: x = 1/2 * acc * t^2 = 2.5 (m)
let expected = &Isometry2::new(Vector2::new(5.0, 2.5), na::zero());
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Force did not properly pull second body. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_lin_vel(Vector2::new(0.0, 0.0));
rb_handle2.borrow_mut().deactivate();
// clearing forces has to work
rb_handle.borrow_mut().clear_linear_force();
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
let expected = &Isometry2::new(Vector2::new(0.0, 0.0), na::zero());
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Force should have been cleared. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// adding forces has to work
rb_handle.borrow_mut().append_lin_force(Vector2::new(0.0, 5.0));
rb_handle.borrow_mut().append_lin_force(Vector2::new(-10.0, 5.0));
// simulate
for _ in 0 .. 2000 {
world.step(0.001);
}
let expected = &Isometry2::new(Vector2::new(-5.0, 5.0), na::zero());
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Forces did not properly add up. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// angular force has to work correctly for different inertias and types
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_lin_vel(Vector2::new(0.0, 0.0));
rb_handle.borrow_mut().clear_forces();
rb_handle2.borrow_mut().set_transformation(Isometry2::new(Vector2::new(5.0, 0.0), na::zero()));
rb_handle2.borrow_mut().set_lin_vel(Vector2::new(0.0, 0.0));
rb_handle2.borrow_mut().activate(1.0);
rb_handle2.borrow_mut().clear_forces();
// add angular forces
rb_handle.borrow_mut().append_ang_force(Vector1::new(10.0));
rb_handle2.borrow_mut().append_ang_force(Vector1::new(10.0));
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected angle
// force of force of 10 (N), inertia of 2.67 => acc = force/inertia = 3.75 rad/s^2
// 1 sec acceleration => angle = 1/2 * acc * t^2 = 1.875
let expected = &Isometry2::new(na::zero(), Vector1::new(1.875));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Rotation did not properly work. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// expected angle
// force of force of 10 (N), inertia of 5.33 => acc = force/inertia = 1.875 rad/s^2
// 1 sec acceleration => angle = 1/2 * acc * t^2 = 0.9375
let expected = &Isometry2::new(Vector2::new(5.0, 0.0), Vector1::new(0.9375));
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Rotation2 did not properly work. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
// clear angular forces
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_ang_vel(Vector1::new(0.0));
rb_handle2.borrow_mut().set_transformation(Isometry2::new(Vector2::new(5.0, 0.0), na::zero()));
rb_handle2.borrow_mut().set_ang_vel(Vector1::new(0.0));
rb_handle.borrow_mut().clear_angular_force();
rb_handle2.borrow_mut().clear_angular_force();
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected angle
let expected = &Isometry2::new(na::zero(), Vector1::new(0.0));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Rotation did not properly stop. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// expected angle
let expected = &Isometry2::new(Vector2::new(5.0, 0.0), Vector1::new(0.0));
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Rotation2 did not properly stop. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_ang_vel(Vector1::new(0.0));
rb_handle.borrow_mut().clear_angular_force();
rb_handle2.borrow_mut().deactivate();
// add angular forces
rb_handle.borrow_mut().append_ang_force(Vector1::new(10.0));
rb_handle.borrow_mut().append_ang_force(Vector1::new(-20.0));
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected angle
// resulting force of force of -10 (N), inertia of 2.67 => acc = force/inertia = -3.75 rad/s^2
// 1 sec acceleration => angle = 1/2 * acc * t^2 = -1.875
let expected = &Isometry2::new(na::zero(), Vector1::new(-1.875));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Combined forces rotation did not properly work. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_ang_vel(Vector1::new(0.0));
rb_handle.borrow_mut().clear_angular_force();
// set and clear both linear and angular forces
rb_handle.borrow_mut().append_lin_force(Vector2::new(0.0, 10.0));
rb_handle.borrow_mut().append_ang_force(Vector1::new(10.0));
rb_handle.borrow_mut().clear_forces();
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected result, body remains in the origin as all forces got cleared
let expected = &Isometry2::new(na::zero(), na::zero());
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Cleared forces shouldn't work anymore. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_ang_vel(Vector1::new(0.0));
rb_handle.borrow_mut().clear_angular_force();
// only clear angular force
rb_handle.borrow_mut().append_lin_force(Vector2::new(0.0, 10.0));
rb_handle.borrow_mut().append_ang_force(Vector1::new(10.0));
rb_handle.borrow_mut().clear_angular_force();
// simulate
for _ in 0 .. 2000 {
world.step(0.001);
}
// expected result, body moves but doesn't rotate
let expected = &Isometry2::new(Vector2::new(0.0, 5.0), na::zero());
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Only linear movement is expected. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_lin_vel(na::zero());
rb_handle.borrow_mut().set_ang_vel(na::zero());
rb_handle.borrow_mut().clear_forces();
// only clear linear force
rb_handle.borrow_mut().append_lin_force(Vector2::new(0.0, 10.0));
rb_handle.borrow_mut().append_ang_force(Vector1::new(10.0));
rb_handle.borrow_mut().clear_linear_force();
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected result, body rotates but doesn't move
let expected = &Isometry2::new(na::zero(), Vector1::new(1.875));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Only rotation is expected. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_lin_vel(na::zero());
rb_handle.borrow_mut().set_ang_vel(na::zero());
rb_handle.borrow_mut().clear_forces();
rb_handle.borrow_mut().activate(1.0);
rb_handle2.borrow_mut().set_transformation(Isometry2::new(Vector2::new(5.0, 0.0), na::zero()));
rb_handle2.borrow_mut().set_lin_vel(na::zero());
rb_handle2.borrow_mut().set_ang_vel(na::zero());
rb_handle2.borrow_mut().clear_forces();
rb_handle2.borrow_mut().activate(1.0);
// apply force on point
rb_handle.borrow_mut().append_force_wrt_point(Vector2::new(0.0, 10.0), Vector2::new(1.0, 1.0));
rb_handle2.borrow_mut().append_force_wrt_point(Vector2::new(0.0, 10.0), Vector2::new(1.0, 1.0));
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected result
// linear displacement 1.25
// angular rotation: -1.875
let expected = &Isometry2::new(Vector2::new(0.0, 1.25), Vector1::new(1.875));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Only rotation is expected on body 1. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// expected result
// linear displacement 1.25
// angular rotation: -1.875
let expected = &Isometry2::new(Vector2::new(5.0, 0.625), Vector1::new(0.9375));
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Only rotation is expected on body 2. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
}
/// Impulse tests
#[cfg(feature = "dim2")]
#[test]
fn impulse2() {
// world
let mut world = World::new();
// rigidbody with side length 2, area 4 and mass 4
let geom = Cuboid::new(Vector2::new(1.0, 1.0));
let rb = RigidBody::new_dynamic(geom.clone(), 1.0, 0.3, 0.6);
let rb_handle = world.add_rigid_body(rb.clone());
// add another body with double the density
let mut rb2 = RigidBody::new_dynamic(geom.clone(), 2.0, 0.3, 0.6);
rb2.append_translation(&Vector2::new(5.0, 0.0));
let rb_handle2 = world.add_rigid_body(rb2);
// switch off gravity
world.set_gravity(Vector2::new(0.0, 0.0));
// impulses have to work for different masses
rb_handle.borrow_mut().apply_central_impulse(Vector2::new(0.0, 10.0));
rb_handle2.borrow_mut().apply_central_impulse(Vector2::new(0.0, 10.0));
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected result
// impulse of 10 N*s on body with mass 4 (kg) results in
// velocity = impulse/mass = 10 N*s / 4 kg = 2.5 m/s
// distance = velocity * time = 2.5 m/s * 1 s = 2.5 m
let expected = &Isometry2::new(Vector2::new(0.0, 2.5), na::zero());
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Different impulse result is expected on body 1. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// expected result
// impulse of 10 N*s on body with mass 8 (kg) results in
// velocity = impulse/mass = 10 N*s / 8 kg = 1.25 m/s
// distance = velocity * time = 1.25 m/s * 1 s = 1.25 m
let expected = &Isometry2::new(Vector2::new(5.0, 1.25), na::zero());
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Different impulse result is expected on body 2. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_lin_vel(na::zero());
rb_handle.borrow_mut().set_ang_vel(na::zero());
rb_handle.borrow_mut().clear_forces();
rb_handle.borrow_mut().activate(1.0);
rb_handle2.borrow_mut().set_transformation(Isometry2::new(Vector2::new(5.0, 0.0), na::zero()));
rb_handle2.borrow_mut().set_lin_vel(na::zero());
rb_handle2.borrow_mut().set_ang_vel(na::zero());
rb_handle2.borrow_mut().clear_forces();
rb_handle2.borrow_mut().activate(1.0);
// torques have to work for different inertias
rb_handle.borrow_mut().apply_angular_momentum(Vector1::new(10.0));
rb_handle2.borrow_mut().apply_angular_momentum(Vector1::new(10.0));
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected result
// torque of 10 N*m*s on body with inertia of 2.67 kg*m^2 results in
// rotation speed of rvel = 10 N*m*s / 2.67 kg*m^2 = 3.75 1/s
// angle after 1s: 3.75
let expected = &Isometry2::new(Vector2::new(0.0, 0.0), Vector1::new(3.75));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Different torque result is expected on body 1. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// expected result
// torque of 10 N*m*s on body with inertia of 5.33 kg*m^2 results in
// rotation speed of rvel = 10 N*m*s / 5.33 kg*m^2 = 1.875 1/s
// angle after 1s: 1.875
let expected = &Isometry2::new(Vector2::new(5.0, 0.0), Vector1::new(1.875));
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Different torque result is expected on body 2. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
// reset bodies
rb_handle.borrow_mut().set_transformation(Isometry2::new(na::zero(), na::zero()));
rb_handle.borrow_mut().set_lin_vel(na::zero());
rb_handle.borrow_mut().set_ang_vel(na::zero());
rb_handle.borrow_mut().clear_forces();
rb_handle.borrow_mut().activate(1.0);
rb_handle2.borrow_mut().set_transformation(Isometry2::new(Vector2::new(5.0, 0.0), na::zero()));
rb_handle2.borrow_mut().set_lin_vel(na::zero());
rb_handle2.borrow_mut().set_ang_vel(na::zero());
rb_handle2.borrow_mut().clear_forces();
rb_handle2.borrow_mut().activate(1.0);
// nudge
rb_handle.borrow_mut().apply_impulse_wrt_point(Vector2::new(0.0, 10.0), Vector2::new(1.0, 1.0));
rb_handle2.borrow_mut().apply_impulse_wrt_point(Vector2::new(0.0, 10.0), Vector2::new(1.0, 1.0));
// simulate
for _ in 0 .. 1000 {
world.step(0.001);
}
// expected values are the combination of the values in the two previous tests,
// except with opposite rotation direction
let expected = &Isometry2::new(Vector2::new(0.0, 2.5), Vector1::new(3.75));
assert!(na::approx_eq_eps(rb_handle.borrow().position(), expected, &0.01),
format!("Different torque result is expected on body 1. Actual: {:?}, Expected: {:?}",
rb_handle.borrow().position(), expected));
// expected values are the combination of the values in the two previous tests,
// except with opposite rotation direction
let expected = &Isometry2::new(Vector2::new(5.0, 1.25), Vector1::new(1.875));
assert!(na::approx_eq_eps(rb_handle2.borrow().position(), expected, &0.01),
format!("Different torque result is expected on body 2. Actual: {:?}, Expected: {:?}",
rb_handle2.borrow().position(), expected));
}
}