-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlorenz_gan_u_chey_d_2.yaml
56 lines (56 loc) · 1.36 KB
/
lorenz_gan_u_chey_d_2.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
lorenz:
K: 8
J: 32
h: 1
b: 10.0
c: 10.0
F: 30.0
time_step: 0.001
num_steps: 20000000
skip: 5
burn_in: 2000
train_test_split: 0.1
gan:
structure: conv
t_skip: 10
x_skip: 1
output: sample
cond_inputs: ["X_t", "U_t"]
generator:
num_cond_inputs: 2
num_random_inputs: 8
num_outputs: 32
activation: leaky
min_conv_filters: 8
min_data_width: 8
filter_width: 5
dropout_alpha: 0.2
normalize: 0
discriminator:
num_cond_inputs: 2
num_sample_inputs: 32
activation: leaky
min_conv_filters: 8
min_data_width: 8
filter_width: 5
dropout_alpha: 0.05
gan_path: /glade/scratch/dgagne/exp_u/
batch_size: 128
gan_index: 1
loss: binary_crossentropy
learning_rate: 0.0002
num_epochs: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
metrics: ["accuracy"]
random_updater:
out_file: /glade/scratch/dgagne/exp_u/ar1_random_updater.pkl
histogram:
num_x_bins: 30
num_u_bins: 30
out_file: /glade/scratch/dgagne/exp_u/u_histogram.pkl
poly:
num_terms: 3
noise_type: multiplicative
out_file: /glade/scratch/dgagne/exp_u/u_poly_multi.pkl
output_nc_file: /glade/scratch/dgagne/exp_u/lorenz_output.nc
output_csv_file: /glade/scratch/dgagne/exp_u/lorenz_combined_output.csv
num_procs: 36