forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmp.jl
666 lines (551 loc) · 23.1 KB
/
gmp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
# This file is a part of Julia. License is MIT: https://julialang.org/license
module GMP
export BigInt
import .Base: *, +, -, /, <, <<, >>, >>>, <=, ==, >, >=, ^, (~), (&), (|), xor,
binomial, cmp, convert, div, divrem, factorial, fld, gcd, gcdx, lcm, mod,
ndigits, promote_rule, rem, show, isqrt, string, powermod,
sum, trailing_zeros, trailing_ones, count_ones, tryparse_internal,
bin, oct, dec, hex, isequal, invmod, _prevpow2, _nextpow2, ndigits0zpb,
widen, signed, unsafe_trunc, trunc, iszero, isone, big, flipsign, signbit,
hastypemax
if Clong == Int32
const ClongMax = Union{Int8, Int16, Int32}
const CulongMax = Union{UInt8, UInt16, UInt32}
else
const ClongMax = Union{Int8, Int16, Int32, Int64}
const CulongMax = Union{UInt8, UInt16, UInt32, UInt64}
end
const CdoubleMax = Union{Float16, Float32, Float64}
version() = VersionNumber(unsafe_string(unsafe_load(cglobal((:__gmp_version, :libgmp), Ptr{Cchar}))))
bits_per_limb() = Int(unsafe_load(cglobal((:__gmp_bits_per_limb, :libgmp), Cint)))
const VERSION = version()
const BITS_PER_LIMB = bits_per_limb()
# GMP's mp_limb_t is by default a typedef of `unsigned long`, but can also be configured to be either
# `unsigned int` or `unsigned long long int`. The correct unsigned type is here named Limb, and must
# be used whenever mp_limb_t is in the signature of ccall'ed GMP functions.
if BITS_PER_LIMB == 32
const Limb = UInt32
const SLimbMax = Union{Int8, Int16, Int32}
const ULimbMax = Union{UInt8, UInt16, UInt32}
elseif BITS_PER_LIMB == 64
const Limb = UInt64
const SLimbMax = Union{Int8, Int16, Int32, Int64}
const ULimbMax = Union{UInt8, UInt16, UInt32, UInt64}
else
error("GMP: cannot determine the type mp_limb_t (__gmp_bits_per_limb == $BITS_PER_LIMB)")
end
"""
BigInt <: Signed
Arbitrary precision integer type.
"""
mutable struct BigInt <: Signed
alloc::Cint
size::Cint
d::Ptr{Limb}
function BigInt()
b = new(zero(Cint), zero(Cint), C_NULL)
MPZ.init!(b)
finalizer(cglobal((:__gmpz_clear, :libgmp)), b)
return b
end
end
"""
BigInt(x)
Create an arbitrary precision integer. `x` may be an `Int` (or anything that can be
converted to an `Int`). The usual mathematical operators are defined for this type, and
results are promoted to a [`BigInt`](@ref).
Instances can be constructed from strings via [`parse`](@ref), or using the `big`
string literal.
# Examples
```jldoctest
julia> parse(BigInt, "42")
42
julia> big"313"
313
```
"""
BigInt(x)
function __init__()
try
if version().major != VERSION.major || bits_per_limb() != BITS_PER_LIMB
msg = bits_per_limb() != BITS_PER_LIMB ? error : warn
msg("The dynamically loaded GMP library (v\"$(version())\" with __gmp_bits_per_limb == $(bits_per_limb()))\n",
"does not correspond to the compile time version (v\"$VERSION\" with __gmp_bits_per_limb == $BITS_PER_LIMB).\n",
"Please rebuild Julia.")
end
ccall((:__gmp_set_memory_functions, :libgmp), Cvoid,
(Ptr{Cvoid},Ptr{Cvoid},Ptr{Cvoid}),
cglobal(:jl_gc_counted_malloc),
cglobal(:jl_gc_counted_realloc_with_old_size),
cglobal(:jl_gc_counted_free_with_size))
ZERO.alloc, ZERO.size, ZERO.d = 0, 0, C_NULL
ONE.alloc, ONE.size, ONE.d = 1, 1, pointer(_ONE)
catch ex
Base.showerror_nostdio(ex, "WARNING: Error during initialization of module GMP")
end
end
module MPZ
# wrapping of libgmp functions
# - "output parameters" are labeled x, y, z, and are returned when appropriate
# - constant input parameters are labeled a, b, c
# - a method modifying its input has a "!" appendend to its name, according to Julia's conventions
# - some convenient methods are added (in addition to the pure MPZ ones), e.g. `add(a, b) = add!(BigInt(), a, b)`
# and `add!(x, a) = add!(x, x, a)`.
using .Base.GMP: BigInt, Limb
const mpz_t = Ref{BigInt}
const bitcnt_t = Culong
gmpz(op::Symbol) = (Symbol(:__gmpz_, op), :libgmp)
init!(x::BigInt) = (ccall((:__gmpz_init, :libgmp), Cvoid, (mpz_t,), x); x)
init2!(x::BigInt, a) = (ccall((:__gmpz_init2, :libgmp), Cvoid, (mpz_t, bitcnt_t), x, a); x)
realloc2!(x, a) = (ccall((:__gmpz_realloc2, :libgmp), Cvoid, (mpz_t, bitcnt_t), x, a); x)
realloc2(a) = realloc2!(BigInt(), a)
sizeinbase(a::BigInt, b) = Int(ccall((:__gmpz_sizeinbase, :libgmp), Csize_t, (mpz_t, Cint), a, b))
for op in (:add, :sub, :mul, :fdiv_q, :tdiv_q, :fdiv_r, :tdiv_r, :gcd, :lcm, :and, :ior, :xor)
op! = Symbol(op, :!)
@eval begin
$op!(x::BigInt, a::BigInt, b::BigInt) = (ccall($(gmpz(op)), Cvoid, (mpz_t, mpz_t, mpz_t), x, a, b); x)
$op(a::BigInt, b::BigInt) = $op!(BigInt(), a, b)
$op!(x::BigInt, b::BigInt) = $op!(x, x, b)
end
end
invert!(x::BigInt, a::BigInt, b::BigInt) =
ccall((:__gmpz_invert, :libgmp), Cint, (mpz_t, mpz_t, mpz_t), x, a, b)
invert(a::BigInt, b::BigInt) = invert!(BigInt(), a, b)
invert!(x::BigInt, b::BigInt) = invert!(x, x, b)
for op in (:add_ui, :sub_ui, :mul_ui, :mul_2exp, :fdiv_q_2exp, :pow_ui, :bin_ui)
op! = Symbol(op, :!)
@eval begin
$op!(x::BigInt, a::BigInt, b) = (ccall($(gmpz(op)), Cvoid, (mpz_t, mpz_t, Culong), x, a, b); x)
$op(a::BigInt, b) = $op!(BigInt(), a, b)
$op!(x::BigInt, b) = $op!(x, x, b)
end
end
ui_sub!(x::BigInt, a, b::BigInt) = (ccall((:__gmpz_ui_sub, :libgmp), Cvoid, (mpz_t, Culong, mpz_t), x, a, b); x)
ui_sub(a, b::BigInt) = ui_sub!(BigInt(), a, b)
for op in (:scan1, :scan0)
@eval $op(a::BigInt, b) = Int(ccall($(gmpz(op)), Culong, (mpz_t, Culong), a, b))
end
mul_si!(x::BigInt, a::BigInt, b) = (ccall((:__gmpz_mul_si, :libgmp), Cvoid, (mpz_t, mpz_t, Clong), x, a, b); x)
mul_si(a::BigInt, b) = mul_si!(BigInt(), a, b)
mul_si!(x::BigInt, b) = mul_si!(x, x, b)
for op in (:neg, :com, :sqrt, :set)
op! = Symbol(op, :!)
@eval begin
$op!(x::BigInt, a::BigInt) = (ccall($(gmpz(op)), Cvoid, (mpz_t, mpz_t), x, a); x)
$op(a::BigInt) = $op!(BigInt(), a)
end
op == :set && continue # MPZ.set!(x) would make no sense
@eval $op!(x::BigInt) = $op!(x, x)
end
for (op, T) in ((:fac_ui, Culong), (:set_ui, Culong), (:set_si, Clong), (:set_d, Cdouble))
op! = Symbol(op, :!)
@eval begin
$op!(x::BigInt, a) = (ccall($(gmpz(op)), Cvoid, (mpz_t, $T), x, a); x)
$op(a) = $op!(BigInt(), a)
end
end
popcount(a::BigInt) = Int(ccall((:__gmpz_popcount, :libgmp), Culong, (mpz_t,), a))
mpn_popcount(d::Ptr{Limb}, s::Integer) = Int(ccall((:__gmpn_popcount, :libgmp), Culong, (Ptr{Limb}, Csize_t), d, s))
mpn_popcount(a::BigInt) = mpn_popcount(a.d, abs(a.size))
function tdiv_qr!(x::BigInt, y::BigInt, a::BigInt, b::BigInt)
ccall((:__gmpz_tdiv_qr, :libgmp), Cvoid, (mpz_t, mpz_t, mpz_t, mpz_t), x, y, a, b)
x, y
end
tdiv_qr(a::BigInt, b::BigInt) = tdiv_qr!(BigInt(), BigInt(), a, b)
powm!(x::BigInt, a::BigInt, b::BigInt, c::BigInt) =
(ccall((:__gmpz_powm, :libgmp), Cvoid, (mpz_t, mpz_t, mpz_t, mpz_t), x, a, b, c); x)
powm(a::BigInt, b::BigInt, c::BigInt) = powm!(BigInt(), a, b, c)
powm!(x::BigInt, b::BigInt, c::BigInt) = powm!(x, x, b, c)
function gcdext!(x::BigInt, y::BigInt, z::BigInt, a::BigInt, b::BigInt)
ccall((:__gmpz_gcdext, :libgmp), Cvoid, (mpz_t, mpz_t, mpz_t, mpz_t, mpz_t), x, y, z, a, b)
x, y, z
end
gcdext(a::BigInt, b::BigInt) = gcdext!(BigInt(), BigInt(), BigInt(), a, b)
cmp(a::BigInt, b::BigInt) = Int(ccall((:__gmpz_cmp, :libgmp), Cint, (mpz_t, mpz_t), a, b))
cmp_si(a::BigInt, b) = Int(ccall((:__gmpz_cmp_si, :libgmp), Cint, (mpz_t, Clong), a, b))
cmp_ui(a::BigInt, b) = Int(ccall((:__gmpz_cmp_ui, :libgmp), Cint, (mpz_t, Culong), a, b))
cmp_d(a::BigInt, b) = Int(ccall((:__gmpz_cmp_d, :libgmp), Cint, (mpz_t, Cdouble), a, b))
mpn_cmp(a::Ptr{Limb}, b::Ptr{Limb}, c) = ccall((:__gmpn_cmp, :libgmp), Cint, (Ptr{Limb}, Ptr{Limb}, Clong), a, b, c)
mpn_cmp(a::BigInt, b::BigInt, c) = mpn_cmp(a.d, b.d, c)
get_str!(x, a, b::BigInt) = (ccall((:__gmpz_get_str,:libgmp), Ptr{Cchar}, (Ptr{Cchar}, Cint, mpz_t), x, a, b); x)
set_str!(x::BigInt, a, b) = Int(ccall((:__gmpz_set_str, :libgmp), Cint, (mpz_t, Ptr{UInt8}, Cint), x, a, b))
get_d(a::BigInt) = ccall((:__gmpz_get_d, :libgmp), Cdouble, (mpz_t,), a)
limbs_write!(x::BigInt, a) = ccall((:__gmpz_limbs_write, :libgmp), Ptr{Limb}, (mpz_t, Clong), x, a)
limbs_finish!(x::BigInt, a) = ccall((:__gmpz_limbs_finish, :libgmp), Cvoid, (mpz_t, Clong), x, a)
import!(x::BigInt, a, b, c, d, e, f) = ccall((:__gmpz_import, :libgmp), Cvoid,
(mpz_t, Csize_t, Cint, Csize_t, Cint, Csize_t, Ptr{Cvoid}), x, a, b, c, d, e, f)
setbit!(x, a) = (ccall((:__gmpz_setbit, :libgmp), Cvoid, (mpz_t, bitcnt_t), x, a); x)
tstbit(a::BigInt, b) = ccall((:__gmpz_tstbit, :libgmp), Cint, (mpz_t, bitcnt_t), a, b) % Bool
end # module MPZ
const ZERO = BigInt()
const ONE = BigInt()
const _ONE = Limb[1]
widen(::Type{Int128}) = BigInt
widen(::Type{UInt128}) = BigInt
widen(::Type{BigInt}) = BigInt
signed(x::BigInt) = x
BigInt(x::BigInt) = x
Signed(x::BigInt) = x
hastypemax(::Type{BigInt}) = false
function tryparse_internal(::Type{BigInt}, s::AbstractString, startpos::Int, endpos::Int, base_::Integer, raise::Bool)
# don't make a copy in the common case where we are parsing a whole String
bstr = startpos == firstindex(s) && endpos == lastindex(s) ? String(s) : String(SubString(s,startpos,endpos))
sgn, base, i = Base.parseint_preamble(true,Int(base_),bstr,firstindex(bstr),lastindex(bstr))
if !(2 <= base <= 62)
raise && throw(ArgumentError("invalid base: base must be 2 ≤ base ≤ 62, got $base"))
return nothing
end
if i == 0
raise && throw(ArgumentError("premature end of integer: $(repr(bstr))"))
return nothing
end
z = BigInt()
if Base.containsnul(bstr)
err = -1 # embedded NUL char (not handled correctly by GMP)
else
err = GC.@preserve bstr MPZ.set_str!(z, pointer(bstr)+(i-firstindex(bstr)), base)
end
if err != 0
raise && throw(ArgumentError("invalid BigInt: $(repr(bstr))"))
return nothing
end
flipsign!(z, sgn)
end
BigInt(x::Union{Clong,Int32}) = MPZ.set_si(x)
BigInt(x::Union{Culong,UInt32}) = MPZ.set_ui(x)
BigInt(x::Bool) = BigInt(UInt(x))
unsafe_trunc(::Type{BigInt}, x::Union{Float32,Float64}) = MPZ.set_d(x)
function BigInt(x::Union{Float32,Float64})
isinteger(x) || throw(InexactError(:BigInt, BigInt, x))
unsafe_trunc(BigInt,x)
end
function trunc(::Type{BigInt}, x::Union{Float32,Float64})
isfinite(x) || throw(InexactError(:trunc, BigInt, x))
unsafe_trunc(BigInt,x)
end
BigInt(x::Float16) = BigInt(Float64(x))
BigInt(x::Float32) = BigInt(Float64(x))
function BigInt(x::Integer)
if x < 0
if typemin(Clong) <= x
return BigInt(convert(Clong,x))
end
b = BigInt(0)
shift = 0
while x < -1
b += BigInt(~UInt32(x&0xffffffff))<<shift
x >>= 32
shift += 32
end
return -b-1
else
if x <= typemax(Culong)
return BigInt(convert(Culong,x))
end
b = BigInt(0)
shift = 0
while x > 0
b += BigInt(UInt32(x&0xffffffff))<<shift
x >>>= 32
shift += 32
end
return b
end
end
rem(x::BigInt, ::Type{Bool}) = !iszero(x) & unsafe_load(x.d) % Bool # never unsafe here
rem(x::BigInt, ::Type{T}) where T<:Union{SLimbMax,ULimbMax} =
iszero(x) ? zero(T) : flipsign(unsafe_load(x.d) % T, x.size)
function rem(x::BigInt, ::Type{T}) where T<:Union{Base.BitUnsigned,Base.BitSigned}
u = zero(T)
for l = 1:min(abs(x.size), cld(sizeof(T), sizeof(Limb)))
u += (unsafe_load(x.d, l) % T) << ((sizeof(Limb)<<3)*(l-1))
end
flipsign(u, x.size)
end
rem(x::Integer, ::Type{BigInt}) = BigInt(x)
function (::Type{T})(x::BigInt) where T<:Base.BitUnsigned
if sizeof(T) < sizeof(Limb)
convert(T, convert(Limb,x))
else
0 <= x.size <= cld(sizeof(T),sizeof(Limb)) || throw(InexactError(Symbol(string(T)), T, x))
x % T
end
end
function (::Type{T})(x::BigInt) where T<:Base.BitSigned
n = abs(x.size)
if sizeof(T) < sizeof(Limb)
SLimb = typeof(Signed(one(Limb)))
convert(T, convert(SLimb, x))
else
0 <= n <= cld(sizeof(T),sizeof(Limb)) || throw(InexactError(Symbol(string(T)), T, x))
y = x % T
ispos(x) ⊻ (y > 0) && throw(InexactError(Symbol(string(T)), T, x)) # catch overflow
y
end
end
Float64(n::BigInt, ::RoundingMode{:ToZero}) = MPZ.get_d(n)
function (::Type{T})(n::BigInt, ::RoundingMode{:ToZero}) where T<:Union{Float16,Float32}
T(Float64(n,RoundToZero),RoundToZero)
end
function (::Type{T})(n::BigInt, ::RoundingMode{:Down}) where T<:CdoubleMax
x = T(n,RoundToZero)
x > n ? prevfloat(x) : x
end
function (::Type{T})(n::BigInt, ::RoundingMode{:Up}) where T<:CdoubleMax
x = T(n,RoundToZero)
x < n ? nextfloat(x) : x
end
function (::Type{T})(n::BigInt, ::RoundingMode{:Nearest}) where T<:CdoubleMax
x = T(n,RoundToZero)
if maxintfloat(T) <= abs(x) < T(Inf)
r = n-BigInt(x)
h = eps(x)/2
if iseven(reinterpret(Unsigned,x)) # check if last bit is odd/even
if r < -h
return prevfloat(x)
elseif r > h
return nextfloat(x)
end
else
if r <= -h
return prevfloat(x)
elseif r >= h
return nextfloat(x)
end
end
end
x
end
Float64(n::BigInt) = Float64(n, RoundNearest)
Float32(n::BigInt) = Float32(n, RoundNearest)
Float16(n::BigInt) = Float16(n, RoundNearest)
promote_rule(::Type{BigInt}, ::Type{<:Integer}) = BigInt
"""
big(x)
Convert a number to a maximum precision representation (typically [`BigInt`](@ref) or
`BigFloat`). See [`BigFloat`](@ref) for information about some pitfalls with floating-point numbers.
"""
function big end
big(::Type{<:Integer}) = BigInt
big(::Type{<:Rational}) = Rational{BigInt}
# Binary ops
for (fJ, fC) in ((:+, :add), (:-,:sub), (:*, :mul),
(:fld, :fdiv_q), (:div, :tdiv_q), (:mod, :fdiv_r), (:rem, :tdiv_r),
(:gcd, :gcd), (:lcm, :lcm),
(:&, :and), (:|, :ior), (:xor, :xor))
@eval begin
($fJ)(x::BigInt, y::BigInt) = MPZ.$fC(x, y)
end
end
/(x::BigInt, y::BigInt) = float(x)/float(y)
function invmod(x::BigInt, y::BigInt)
z = zero(BigInt)
ya = abs(y)
if ya == 1
return z
end
if (y==0 || MPZ.invert!(z, x, ya) == 0)
throw(DomainError(y))
end
# GMP always returns a positive inverse; we instead want to
# normalize such that div(z, y) == 0, i.e. we want a negative z
# when y is negative.
if y < 0
MPZ.add!(z, y)
end
# The postcondition is: mod(z * x, y) == mod(big(1), m) && div(z, y) == 0
return z
end
# More efficient commutative operations
for (fJ, fC) in ((:+, :add), (:*, :mul), (:&, :and), (:|, :ior), (:xor, :xor))
fC! = Symbol(fC, :!)
@eval begin
($fJ)(a::BigInt, b::BigInt, c::BigInt) = MPZ.$fC!(MPZ.$fC(a, b), c)
($fJ)(a::BigInt, b::BigInt, c::BigInt, d::BigInt) = MPZ.$fC!(MPZ.$fC!(MPZ.$fC(a, b), c), d)
($fJ)(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) =
MPZ.$fC!(MPZ.$fC!(MPZ.$fC!(MPZ.$fC(a, b), c), d), e)
end
end
# Basic arithmetic without promotion
+(x::BigInt, c::CulongMax) = MPZ.add_ui(x, c)
+(c::CulongMax, x::BigInt) = x + c
-(x::BigInt, c::CulongMax) = MPZ.sub_ui(x, c)
-(c::CulongMax, x::BigInt) = MPZ.ui_sub(c, x)
+(x::BigInt, c::ClongMax) = c < 0 ? -(x, -(c % Culong)) : x + convert(Culong, c)
+(c::ClongMax, x::BigInt) = c < 0 ? -(x, -(c % Culong)) : x + convert(Culong, c)
-(x::BigInt, c::ClongMax) = c < 0 ? +(x, -(c % Culong)) : -(x, convert(Culong, c))
-(c::ClongMax, x::BigInt) = c < 0 ? -(x + -(c % Culong)) : -(convert(Culong, c), x)
*(x::BigInt, c::CulongMax) = MPZ.mul_ui(x, c)
*(c::CulongMax, x::BigInt) = x * c
*(x::BigInt, c::ClongMax) = MPZ.mul_si(x, c)
*(c::ClongMax, x::BigInt) = x * c
/(x::BigInt, y::Union{ClongMax,CulongMax}) = float(x)/y
/(x::Union{ClongMax,CulongMax}, y::BigInt) = x/float(y)
# unary ops
(-)(x::BigInt) = MPZ.neg(x)
(~)(x::BigInt) = MPZ.com(x)
<<(x::BigInt, c::UInt) = c == 0 ? x : MPZ.mul_2exp(x, c)
>>(x::BigInt, c::UInt) = c == 0 ? x : MPZ.fdiv_q_2exp(x, c)
>>>(x::BigInt, c::UInt) = x >> c
trailing_zeros(x::BigInt) = MPZ.scan1(x, 0)
trailing_ones(x::BigInt) = MPZ.scan0(x, 0)
count_ones(x::BigInt) = MPZ.popcount(x)
"""
count_ones_abs(x::BigInt)
Number of ones in the binary representation of abs(x).
"""
count_ones_abs(x::BigInt) = iszero(x) ? 0 : MPZ.mpn_popcount(x)
divrem(x::BigInt, y::BigInt) = MPZ.tdiv_qr(x, y)
cmp(x::BigInt, y::BigInt) = MPZ.cmp(x, y)
cmp(x::BigInt, y::ClongMax) = MPZ.cmp_si(x, y)
cmp(x::BigInt, y::CulongMax) = MPZ.cmp_ui(x, y)
cmp(x::BigInt, y::Integer) = cmp(x, big(y))
cmp(x::Integer, y::BigInt) = -cmp(y, x)
cmp(x::BigInt, y::CdoubleMax) = isnan(y) ? -1 : MPZ.cmp_d(x, y)
cmp(x::CdoubleMax, y::BigInt) = -cmp(y, x)
isqrt(x::BigInt) = MPZ.sqrt(x)
^(x::BigInt, y::Culong) = MPZ.pow_ui(x, y)
function bigint_pow(x::BigInt, y::Integer)
if y<0; throw(DomainError(y, "`y` cannot be negative.")); end
@noinline throw1(y) =
throw(OverflowError("exponent $y is too large and computation will overflow"))
if x== 1; return x; end
if x==-1; return isodd(y) ? x : -x; end
if y>typemax(Culong)
x==0 && return x
#At this point, x is not 1, 0 or -1 and it is not possible to use
#gmpz_pow_ui to compute the answer. Note that the magnitude of the
#answer is:
#- at least 2^(2^32-1) ≈ 10^(1.3e9) (if Culong === UInt32).
#- at least 2^(2^64-1) ≈ 10^(5.5e18) (if Culong === UInt64).
#
#Assume that the answer will definitely overflow.
throw1(y)
end
return x^convert(Culong, y)
end
^(x::BigInt , y::BigInt ) = bigint_pow(x, y)
^(x::BigInt , y::Bool ) = y ? x : one(x)
^(x::BigInt , y::Integer) = bigint_pow(x, y)
^(x::Integer, y::BigInt ) = bigint_pow(BigInt(x), y)
^(x::Bool , y::BigInt ) = Base.power_by_squaring(x, y)
function powermod(x::BigInt, p::BigInt, m::BigInt)
r = MPZ.powm(x, p, m)
return m < 0 && r > 0 ? MPZ.add!(r, m) : r # choose sign consistent with mod(x^p, m)
end
powermod(x::Integer, p::Integer, m::BigInt) = powermod(big(x), big(p), m)
function gcdx(a::BigInt, b::BigInt)
if iszero(b) # shortcut this to ensure consistent results with gcdx(a,b)
return a < 0 ? (-a,-ONE,b) : (a,one(BigInt),b)
# we don't return the globals ONE and ZERO in case the user wants to
# mutate the result
end
g, s, t = MPZ.gcdext(a, b)
if t == 0
# work around a difference in some versions of GMP
if a == b
return g, t, s
elseif abs(a)==abs(b)
return g, t, -s
end
end
g, s, t
end
sum(arr::AbstractArray{BigInt}) = foldl(MPZ.add!, arr; init=BigInt(0))
# note: a similar implementation for `prod` won't be efficient:
# 1) the time complexity of the allocations is negligible compared to the multiplications
# 2) assuming arr contains similarly sized BigInts, the multiplications are much more
# performant when doing e.g. ((a1*a2)*(a2*a3))*(...) rather than a1*(a2*(a3*(...))),
# which is exactly what the default implementation of `prod` does, via mapreduce
# (which maybe could be slightly optimized for BigInt)
factorial(x::BigInt) = isneg(x) ? BigInt(0) : MPZ.fac_ui(x)
binomial(n::BigInt, k::UInt) = MPZ.bin_ui(n, k)
binomial(n::BigInt, k::Integer) = k < 0 ? BigInt(0) : binomial(n, UInt(k))
==(x::BigInt, y::BigInt) = cmp(x,y) == 0
==(x::BigInt, i::Integer) = cmp(x,i) == 0
==(i::Integer, x::BigInt) = cmp(x,i) == 0
==(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) == 0
==(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) == 0
iszero(x::BigInt) = x.size == 0
isone(x::BigInt) = x == Culong(1)
<=(x::BigInt, y::BigInt) = cmp(x,y) <= 0
<=(x::BigInt, i::Integer) = cmp(x,i) <= 0
<=(i::Integer, x::BigInt) = cmp(x,i) >= 0
<=(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) <= 0
<=(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) >= 0
<(x::BigInt, y::BigInt) = cmp(x,y) < 0
<(x::BigInt, i::Integer) = cmp(x,i) < 0
<(i::Integer, x::BigInt) = cmp(x,i) > 0
<(x::BigInt, f::CdoubleMax) = isnan(f) ? false : cmp(x,f) < 0
<(f::CdoubleMax, x::BigInt) = isnan(f) ? false : cmp(x,f) > 0
isneg(x::BigInt) = x.size < 0
ispos(x::BigInt) = x.size > 0
signbit(x::BigInt) = isneg(x)
flipsign!(x::BigInt, y::Integer) = (signbit(y) && (x.size = -x.size); x)
flipsign( x::BigInt, y::Integer) = signbit(y) ? -x : x
flipsign( x::BigInt, y::BigInt) = signbit(y) ? -x : x
# above method to resolving ambiguities with flipsign(::T, ::T) where T<:Signed
show(io::IO, x::BigInt) = print(io, string(x))
function string(n::BigInt; base::Integer = 10, pad::Integer = 1)
base < 0 && return Base._base(Int(base), n, pad, (base>0) & (n.size<0))
2 <= base <= 62 || throw(ArgumentError("base must be 2 ≤ base ≤ 62, got $base"))
iszero(n) && pad < 1 && return ""
nd1 = ndigits(n, base=base)
nd = max(nd1, pad)
sv = Base.StringVector(nd + isneg(n))
GC.@preserve sv MPZ.get_str!(pointer(sv) + nd - nd1, base, n)
@inbounds for i = (1:nd-nd1) .+ isneg(n)
sv[i] = '0' % UInt8
end
isneg(n) && (sv[1] = '-' % UInt8)
String(sv)
end
function ndigits0zpb(x::BigInt, b::Integer)
b < 2 && throw(DomainError(b, "`b` cannot be less than 2."))
x.size == 0 && return 0 # for consistency with other ndigits0z methods
if ispow2(b) && 2 <= b <= 62 # GMP assumes b is in this range
MPZ.sizeinbase(x, b)
else
# non-base 2 mpz_sizeinbase might return an answer 1 too big
# use property that log(b, x) < ndigits(x, base=b) <= log(b, x) + 1
n = MPZ.sizeinbase(x, 2)
lb = log2(b) # assumed accurate to <1ulp (true for openlibm)
q,r = divrem(n,lb)
iq = Int(q)
maxerr = q*eps(lb) # maximum error in remainder
if r-1.0 < maxerr
abs(x) >= big(b)^iq ? iq+1 : iq
elseif lb-r < maxerr
abs(x) >= big(b)^(iq+1) ? iq+2 : iq+1
else
iq+1
end
end
end
# Fast paths for nextpow(2, x::BigInt)
# below, ONE is always left-shifted by at least one digit, so a new BigInt is
# allocated, which can be safely mutated
_prevpow2(x::BigInt) = -2 <= x <= 2 ? x : flipsign!(ONE << (ndigits(x, base=2) - 1), x)
_nextpow2(x::BigInt) = count_ones_abs(x) <= 1 ? x : flipsign!(ONE << ndigits(x, base=2), x)
Base.checked_abs(x::BigInt) = abs(x)
Base.checked_neg(x::BigInt) = -x
Base.checked_add(a::BigInt, b::BigInt) = a + b
Base.checked_sub(a::BigInt, b::BigInt) = a - b
Base.checked_mul(a::BigInt, b::BigInt) = a * b
Base.checked_div(a::BigInt, b::BigInt) = div(a, b)
Base.checked_rem(a::BigInt, b::BigInt) = rem(a, b)
Base.checked_fld(a::BigInt, b::BigInt) = fld(a, b)
Base.checked_mod(a::BigInt, b::BigInt) = mod(a, b)
Base.checked_cld(a::BigInt, b::BigInt) = cld(a, b)
Base.add_with_overflow(a::BigInt, b::BigInt) = a + b, false
Base.sub_with_overflow(a::BigInt, b::BigInt) = a - b, false
Base.mul_with_overflow(a::BigInt, b::BigInt) = a * b, false
function Base.deepcopy_internal(x::BigInt, stackdict::IdDict)
if haskey(stackdict, x)
return stackdict[x]
end
y = MPZ.set(x)
stackdict[x] = y
return y
end
end # module