-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo02.py
310 lines (259 loc) · 11 KB
/
demo02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#! -*- coding:utf-8 -*-
import json
import numpy as np
from random import choice
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
import re, os
import codecs
mode = 0
maxlen = 100
learning_rate = 5e-5
min_learning_rate = 1e-5
config_path = './chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = './chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = './chinese_L-12_H-768_A-12/vocab.txt'
token_dict = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
# 重写tokenizer
class OurTokenizer(Tokenizer):
def _tokenize(self, text):
R = []
for c in text:
if c in self._token_dict:
R.append(c)
elif self._is_space(c):
R.append('[unused1]') # space类用未经训练的[unused1]表示
else:
R.append('[UNK]') # 剩余的字符是[UNK]
return R
tokenizer = OurTokenizer(token_dict)
train_data = json.load(open('./data/train_data_real.json'))
id2predicate, predicate2id = json.load(open('./data/all_schemas_me_real.json'))
id2predicate = {int(i): j for i, j in id2predicate.items()}
num_classes = len(id2predicate)
total_data = []
total_data.extend(train_data)
if not os.path.exists('./data/random_order_train.json'):
random_order = list(range(len(total_data)))
np.random.shuffle(random_order)
json.dump(
random_order,
open('./data/random_order_train.json', 'w'),
indent=4
)
else:
random_order = json.load(open('./data/random_order_train.json'))
train_data = [total_data[j] for i, j in enumerate(random_order) if i % 8 != mode]
dev_data = [total_data[j] for i, j in enumerate(random_order) if i % 8 == mode]
predicates = {}
for d in train_data:
for sp in d['spo_list']:
if sp[2] not in predicates:
predicates[sp[2]] = []
predicates[sp[2]].append(sp)
def seq_padding(X, padding=0):
L = [len(x) for x in X]
ML = max(L)
return np.array(
[
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
]
)
def list_find(list1, list2):
n_list2 = len(list2)
for i in list(range(len(list1))):
if list1[i: i + n_list2] == list2:
return i
return -1
class data_generator:
def __init__(self, data, batch_size=32):
self.data = data
self.batch_size = batch_size
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = list(range(len(self.data)))
np.random.shuffle(idxs)
T1, T2, S1, S2, S3, S4, K1, K2, K3, K4, O1, O2, O3, O4 = [], [], [], [], [], [], [], [], [], [], [], [], [], []
for i in idxs:
d = self.data[i]
text = d['text'][:maxlen]
tokens = tokenizer.tokenize(text)
items = {}
for sp in d['spo_list']:
sp = (tokenizer.tokenize(sp[0])[1:-1], tokenizer.tokenize(sp[1])[1:-1], sp[2],
tokenizer.tokenize(sp[3])[1:-1], tokenizer.tokenize(sp[4])[1:-1])
subjectid = list_find(tokens, sp[0])
ssubjectid = list_find(tokens, sp[1])
objectid = list_find(tokens, sp[3])
oobjectid = list_find(tokens, sp[4])
if subjectid != -1 and objectid != -1:
key = (subjectid, subjectid + len(sp[0]), ssubjectid, ssubjectid + len(sp[1]))
if key not in items:
items[key] = []
items[key].append((objectid,
objectid + len(sp[3]),
oobjectid,
oobjectid + len(sp[4]),
predicate2id[sp[2]]))
if items:
t1, t2 = tokenizer.encode(first=text)
T1.append(t1)
T2.append(t2)
s1, s2, s3, s4 = np.zeros(len(tokens)), np.zeros(len(tokens)), np.zeros(len(tokens)), np.zeros(len(tokens))
# 追加sub_Task
for j in items:
s1[j[0]] = 1
s2[j[1] - 1] = 1
s3[j[2]] = 1
s4[j[3] - 1] = 1
k1, k2, k3, k4 = np.array(list(items.keys())).T
k1 = choice(k1)
k2 = choice(k2[k2 >= k1])
k3 = choice(k3)
k4 = choice(k4[k4 >= k3])
o1, o2, o3, o4 = np.zeros((len(tokens), num_classes)), np.zeros((len(tokens), num_classes)), \
np.zeros((len(tokens), num_classes)), np.zeros((len(tokens), num_classes))
# 追加object_Task
for j in items.get((k1, k2), []):
o1[j[0]][j[4]] = 1
o2[j[1] - 1][j[4]] = 1
o3[j[2]][j[4]] = 1
o4[j[3] - 1][j[4]] = 1
S1.append(s1)
S2.append(s2)
S3.append(s3)
S4.append(s4)
K1.append([k1])
K2.append([k2 - 1])
K3.append([k3])
K4.append([k4 - 1])
O1.append(o1)
O2.append(o2)
O3.append(o3)
O4.append(o4)
if len(T1) == self.batch_size or i == idxs[-1]:
T1 = seq_padding(T1)
T2 = seq_padding(T2)
S1 = seq_padding(S1)
S2 = seq_padding(S2)
S3 = seq_padding(S3)
S4 = seq_padding(S4)
O1 = seq_padding(O1, np.zeros(num_classes))
O2 = seq_padding(O2, np.zeros(num_classes))
O3 = seq_padding(O3, np.zeros(num_classes))
O4 = seq_padding(O4, np.zeros(num_classes))
K1, K2, K3, K4 = np.array(K1), np.array(K2), np.array(K3), np.array(K4)
yield [T1, T2, S1, S2, S3, S4, K1, K2, K3, K4, O1, O2, O3, O4], None
T1, T2, S1, S2, S3, S4, K1, K2, K3, K4, O1, O2, O3, O4 = [], [], [], [], [], [], [], [], [], [], [], [], [], []
# Bert预训练模型开始
from keras.layers import *
from keras.models import Model
import keras.backend as K
import tensorflow as tf
from keras.callbacks import Callback
from keras.optimizers import Adam
def seq_gather(x):
# seq是[none,seq_len,s_size]的格式,idxs是[None,1]的格式
# 在seq的第i个序列中选出第i个向量,最终输出[None,s_size]的向量
seq, idxs = x
idxs = K.cast(idxs, 'int32')
batch_idxs = K.arange(0, K.shape(seq)[0])
batch_idxs = K.expand_dims(batch_idxs, 1)
idxs = K.concatenate([batch_idxs, idxs], 1)
return tf.gather_nd(seq, idxs)
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
t1_in = Input(shape=(None,))
t2_in = Input(shape=(None,))
s1_in = Input(shape=(None,))
s2_in = Input(shape=(None,))
s3_in = Input(shape=(None,))
s4_in = Input(shape=(None,))
k1_in = Input(shape=(1,))
k2_in = Input(shape=(1,))
k3_in = Input(shape=(1,))
k4_in = Input(shape=(1,))
o1_in = Input(shape=(None, num_classes))
o2_in = Input(shape=(None, num_classes))
o3_in = Input(shape=(None, num_classes))
o4_in = Input(shape=(None, num_classes))
t1, t2, s1, s2, s3, s4, k1, k2, k3, k4, o1, o2, o3, o4 = t1_in, t2_in, s1_in, s2_in, s3_in, s4_in, k1_in, k2_in, k3_in, k4_in, o1_in, o2_in, o3_in, o4_in
mask = Lambda(lambda x: K.cast(K.greater(K.expand_dims(x, 2), 0), 'float32'))(t1)
t = bert_model([t1, t2])
ps1 = Dense(1, activation='sigmoid')(t)
ps2 = Dense(1, activation='sigmoid')(t)
ps3 = Dense(1, activation='sigmoid')(t)
ps4 = Dense(1, activation='sigmoid')(t)
subject_model = Model([t1_in, t2_in], [ps1, ps2, ps3, ps4])
k1v = Lambda(seq_gather)([t, k1])
k2v = Lambda(seq_gather)([t, k2])
k3v = Lambda(seq_gather)([t, k3])
k4v = Lambda(seq_gather)([t, k4])
kv = Average()([k1v, k2v, k3v, k4v])
t = Add()([t, kv])
po1 = Dense(num_classes, activation='sigmoid')(t)
po2 = Dense(num_classes, activation='sigmoid')(t)
po3 = Dense(num_classes, activation='sigmoid')(t)
po4 = Dense(num_classes, activation='sigmoid')(t)
object_model = Model([t1_in, t2_in, k1_in, k2_in, k3_in, k4_in], [po1, po2, po3, po4])
train_model = Model([t1_in, t2_in, s1_in, s2_in, s3_in, s4_in, k1_in, k2_in, k3_in, k4_in, o1_in, o2_in, o3_in, o4_in],
[ps1, ps2, ps3, ps4, po1, po2, po3, po4])
s1 = K.expand_dims(s1, 2)
s2 = K.expand_dims(s2, 2)
s3 = K.expand_dims(s3, 2)
s4 = K.expand_dims(s4, 2)
s1_loss = K.binary_crossentropy(s1, ps1)
s1_loss = K.sum(s1_loss * mask) / K.sum(mask)
s2_loss = K.binary_crossentropy(s2, ps2)
s2_loss = K.sum(s2_loss * mask) / K.sum(mask)
s3_loss = K.binary_crossentropy(s3, ps3)
s3_loss = K.sum(s3_loss * mask) / K.sum(mask)
s4_loss = K.binary_crossentropy(s4, ps4)
s4_loss = K.sum(s4_loss * mask) / K.sum(mask)
o1_loss = K.sum(K.binary_crossentropy(o1, po1), 2, keepdims=True)
o1_loss = K.sum(o1_loss * mask) / K.sum(mask)
o2_loss = K.sum(K.binary_crossentropy(o2, po2), 2, keepdims=True)
o2_loss = K.sum(o2_loss * mask) / K.sum(mask)
o3_loss = K.sum(K.binary_crossentropy(o3, po3), 2, keepdims=True)
o3_loss = K.sum(o3_loss * mask) / K.sum(mask)
o4_loss = K.sum(K.binary_crossentropy(o1, po1), 2, keepdims=True)
o4_loss = K.sum(o4_loss * mask) / K.sum(mask)
loss = (s1_loss + s2_loss + s3_loss + s4_loss) + (o1_loss + o2_loss + o3_loss + o4_loss)
train_model.add_loss(loss)
train_model.compile(optimizer=Adam(learning_rate))
train_model.summary()
class Evaluate(Callback):
def __init__(self):
self.F1 = []
self.best = 0.
self.passed = 0
self.stage = 0
def on_batch_begin(self, batch, logs=None):
if self.passed < self.params['steps']:
lr = (self.passed + 1.) / self.params['steps'] * learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
elif self.params['steps'] <= self.passed < self.params['steps'] * 2:
lr = (2 - (self.passed + 1.) / self.params['steps']) * (learning_rate - min_learning_rate)
lr += min_learning_rate
K.set_value(self.model.optimizer.lr, lr)
self.passed += 1
train_D = data_generator(train_data)
evaluator = Evaluate()
if __name__ == '__main__':
train_model.fit_generator(train_D.__iter__(),
steps_per_epoch=1000,
epochs=40,
callbacks=[evaluator]
)
else:
train_model.load_weights('best_model.weights')