-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4-seedbs.R
176 lines (157 loc) · 5.12 KB
/
4-seedbs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
set.seed(1)
folder <- "results/"
watermark_key_length <- 1000
experiment_settings <- c(0, 1, 2, 4)
rolling_window_size <- 20
permutation_count <- 999
models <- c("meta-llama/Meta-Llama-3-8B")
models_folders_prefix <- c("ml3")
generation_methods <- c("gumbel", "transform")
# block_size_permutation_pair <- matrix(
# c(
# 20, 99,
# 20, 249,
# 20, 499,
# 20, 749,
# 20, 999,
# 10, 999,
# 30, 999,
# 40, 999,
# 50, 999
# ), ncol = 2, byrow = TRUE
# )
pvalue_files_templates <- NULL
for (model_index in seq_along(models)) {
for (generation_index in seq_along(generation_methods)) {
for (experiment_index in seq_along(experiment_settings)) {
pvalue_files_templates <- c(pvalue_files_templates, paste0(
folder,
models_folders_prefix[model_index],
"-",
generation_methods[generation_index],
"-",
watermark_key_length,
"-",
experiment_settings[experiment_index],
"-",
rolling_window_size,
"-",
permutation_count,
"-detect/XXX-YYY.csv"
))
}
}
}
filename <- sub("YYY", 0, sub("XXX", 0, pvalue_files_templates[1]))
metric_count <- ncol(read.csv(filename, header = FALSE))
get_seeded_intervals <- function(n, decay = sqrt(2), unique.int = FALSE) {
n <- as.integer(n)
depth <- log(n, base = decay)
depth <- ceiling(depth)
boundary_mtx <- matrix(NA, ncol = 2)
colnames(boundary_mtx) <- c("st", "end")
boundary_mtx[1, ] <- c(1, n)
depth <- log(n, base = decay)
depth <- ceiling(depth)
for (i in 2:depth) {
int_length <- n * (1 / decay)^(i - 1)
n_int <- ceiling(round(n / int_length, 14)) * 2 - 1
boundary_mtx <- rbind(
boundary_mtx,
cbind(
floor(seq(1, n - int_length, length.out = (n_int))),
ceiling(seq(int_length, n, length.out = (n_int)))
)
)
}
if (unique.int) {
return(unique(boundary_mtx))
}
boundary_mtx
}
ks_statistic <- function(pvalues) {
result <- rep(NA, length(pvalues) - 1)
for (k in seq_len(length(pvalues) - 1)) {
segment_before <- pvalues[1:k]
segment_after <- pvalues[(k + 1):length(pvalues)]
ks_test_stat <- ks.test(segment_before, segment_after)$statistic
result[k] <-
k * (length(pvalues) - k) / (length(pvalues))^(3 / 2) * ks_test_stat
}
c(which.max(result), max(result))
}
permute_pvalues <- function(pvalues, block_size = 1) {
pvalue_indices <- seq_len(length(pvalues) - block_size + 1)
sampled_indices <-
sample(pvalue_indices, size = ceiling(length(pvalues) / block_size))
permuted_pvalues <- NULL
for (sampled_index in sampled_indices) {
permuted_pvalues <- c(
permuted_pvalues, pvalues[sampled_index:(sampled_index + block_size - 1)]
)
}
permuted_pvalues[seq_len(length(pvalues))]
}
significance_permutation_count <- 999
segment_significance <- function(pvalues) {
original_ks_statistic <- ks_statistic(pvalues)
p_tilde <- c(1)
for (t_prime in seq_len(significance_permutation_count)) {
pvalues_permuted <- permute_pvalues(pvalues, block_size = 10)
ks_statistic_permuted <- ks_statistic(pvalues_permuted)
p_tilde <- c(p_tilde, original_ks_statistic[2] <= ks_statistic_permuted[2])
}
c(original_ks_statistic[1], mean(p_tilde))
}
prompt_count <- 100
pvalue_files <- NULL
for (pvalue_files_template in pvalue_files_templates) {
for (prompt_index in seq_len(prompt_count)) {
# Python index in the file name
filename <- sub("XXX", prompt_index - 1, pvalue_files_template)
pvalue_files <- c(pvalue_files, filename)
}
}
args <- commandArgs(trailingOnly = TRUE)
template_index <- as.integer(args[1]) # 1 to 8
prompt_index <- as.integer(args[2]) # 0 to 99
seeded_interval_index <- as.integer(args[3]) # 1 to 47 for 500 tokens
# as.integer(gsub('^.*B-|-T.*$', '', pvalue_files_templates[template_index]))
seeded_intervals_minimum <- 50
token_count <- 500
seeded_intervals <- get_seeded_intervals(
token_count - rolling_window_size,
decay = sqrt(2), unique.int = TRUE
)
segment_length_cutoff <-
seeded_intervals[, 2] - seeded_intervals[, 1] >= seeded_intervals_minimum
seeded_intervals <- seeded_intervals[segment_length_cutoff, ]
seeded_intervals <- seeded_intervals + rolling_window_size / 2
seedbs_filename <-
sub("XXX", prompt_index, pvalue_files_templates[template_index])
seedbs_filename <-
sub("YYY", paste0("SeedBS-", seeded_interval_index), seedbs_filename)
if (!file.exists(seedbs_filename)) {
pvalue_matrix <- matrix(
NA,
nrow = seeded_intervals[seeded_interval_index, 2] -
seeded_intervals[seeded_interval_index, 1] + 1,
ncol = metric_count
)
for (i in seq_len(nrow(pvalue_matrix))) {
pvalue_filename <-
sub("XXX", prompt_index, pvalue_files_templates[template_index])
pvalue_filename <- sub(
"YYY",
seeded_intervals[seeded_interval_index, 1] + i - 1 - 1,
pvalue_filename
)
pvalue_matrix[i, ] <- unlist(read.csv(pvalue_filename, header = FALSE))
}
# apply segment_significance to each column of pvalue_matrix
index_p_tilde <- apply(pvalue_matrix, 2, segment_significance)
write.table(
index_p_tilde, seedbs_filename,
sep = ",", row.names = FALSE, col.names = FALSE
)
}