-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4.1-seedbs.py
226 lines (179 loc) · 7.08 KB
/
4.1-seedbs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from numpy import ceil as np_ceil, floor, isnan, nan
from numpy.random import seed as np_random_seed
from random import sample, seed
from pandas import DataFrame
from math import ceil, log, sqrt
from numpy import array, linspace, mean, unique, full
from os import makedirs
from os.path import dirname, exists
from pandas import read_csv
from scipy.stats import ks_2samp
import sys
# Set seed for reproducibility
seed(1)
np_random_seed(1)
# Initialize variables
folder = "results/"
watermark_key_length = 1000
experiment_settings = [0, 1, 2, 4]
rolling_window_size = 20
permutation_count = 999
models = ["meta-llama/Meta-Llama-3-8B"]
models_folders_prefix = ["ml3"]
generation_methods = ["gumbel", "transform"]
# Generate pvalue_files_templates
pvalue_files_templates = []
for model_prefix in models_folders_prefix:
for gen_method in generation_methods:
for experiment in experiment_settings:
template = (
f"{folder}{model_prefix}-"
f"{gen_method}-"
f"{watermark_key_length}-"
f"{experiment}-"
f"{rolling_window_size}-"
f"{permutation_count}-detect/XXX-YYY.csv"
)
pvalue_files_templates.append(template)
# Replace 'XXX' and 'YYY' with '0' for the first filename
first_filename = pvalue_files_templates[0].replace(
"XXX", "0").replace("YYY", "0")
# Read CSV to determine metric_count
if not exists(first_filename):
raise FileNotFoundError(f"File {first_filename} does not exist.")
metric_count = read_csv(first_filename, header=None).shape[1]
def get_seeded_intervals(n, decay=sqrt(2), unique_int=False):
n = int(n)
depth = log(n, decay)
depth = ceil(depth)
boundary_mtx = []
boundary_mtx.append((1, n))
for i in range(2, depth + 1):
int_length = n * (1 / decay) ** (i - 1)
n_int = ceil(round(n / int_length, 14)) * 2 - 1
starts = floor(linspace(
1, n - int_length, int(n_int))).astype(int)
ends = np_ceil(linspace(int_length, n, int(n_int))).astype(int)
for st, end in zip(starts, ends):
boundary_mtx.append((st, end))
boundary_mtx = array(boundary_mtx)
if unique_int:
boundary_mtx = unique(boundary_mtx, axis=0)
return boundary_mtx
def ks_statistic(pvalues):
result = []
n = len(pvalues)
for k in range(1, n):
segment_before = pvalues[:k]
segment_after = pvalues[k:]
if len(segment_before) == 0 or len(segment_after) == 0:
continue
ks_test_stat = ks_2samp(segment_before, segment_after).statistic
value = k * (n - k) / (n ** 1.5) * ks_test_stat
result.append((k, value))
if not result:
return (None, None)
max_k, max_val = max(result, key=lambda x: x[1])
return (max_k, max_val)
def permute_pvalues(pvalues, block_size=1):
n = len(pvalues)
pvalue_indices = list(range(n - block_size + 1))
sampled_size = ceil(n / block_size)
sampled_indices = sample(pvalue_indices, k=sampled_size)
permuted_pvalues = []
for idx in sampled_indices:
permuted_pvalues.extend(pvalues[idx:idx + block_size])
# Truncate to original length
return permuted_pvalues[:n]
significance_permutation_count = 999
def segment_significance(pvalues):
original_ks_statistic = ks_statistic(pvalues)
if original_ks_statistic[1] is None:
return (None, None)
p_tilde = [1]
for _ in range(significance_permutation_count):
pvalues_permuted = permute_pvalues(pvalues, block_size=10)
ks_statistic_permuted = ks_statistic(pvalues_permuted)
if ks_statistic_permuted[1] is None:
p_tilde.append(0)
else:
p_tilde.append(
int(original_ks_statistic[1] <= ks_statistic_permuted[1]))
return (original_ks_statistic[0], mean(p_tilde))
prompt_count = 100
pvalue_files = []
for template in pvalue_files_templates:
for prompt_idx in range(prompt_count):
filename = template.replace("XXX", str(prompt_idx))
pvalue_files.append(filename)
# Parse command line arguments
if len(sys.argv) < 4:
print("Usage: script.py " +
"<template_index> <prompt_index> <seeded_interval_index>")
sys.exit(1)
try:
template_index = int(sys.argv[1]) # 1 to len(pvalue_files_templates)
prompt_index = int(sys.argv[2]) # 0 to 99
seeded_interval_index = int(sys.argv[3]) # 1-based index
except ValueError:
print("Arguments must be integers.")
sys.exit(1)
# Adjust indices to 0-based for Python
template_index -= 1
seeded_interval_index -= 1
if not (0 <= template_index < len(pvalue_files_templates)):
raise IndexError(
f"template_index must be between 1 and {len(pvalue_files_templates)}."
)
if not (0 <= prompt_index < prompt_count):
raise IndexError(f"prompt_index must be between 0 and {prompt_count - 1}.")
seeded_intervals_minimum = 50
token_count = 500
seeded_intervals = get_seeded_intervals(
token_count - rolling_window_size, decay=sqrt(2), unique_int=True)
# Apply segment length cutoff
segment_length = seeded_intervals[:, 1] - seeded_intervals[:, 0]
segment_length_cutoff = segment_length >= seeded_intervals_minimum
seeded_intervals = seeded_intervals[segment_length_cutoff, :]
# Adjust intervals by adding half the rolling window size
seeded_intervals = seeded_intervals + (rolling_window_size / 2)
# Construct seedbs_filename
seedbs_filename = pvalue_files_templates[template_index].replace(
"XXX", str(prompt_index))
seedbs_filename = seedbs_filename.replace(
"YYY", f"SeedBSpy-{seeded_interval_index}")
# Check if the file already exists
if not exists(seedbs_filename):
interval = seeded_intervals[seeded_interval_index]
start = int(interval[0])
end = int(interval[1])
# Initialize pvalue_matrix with NaNs
pvalue_matrix = full((end - start + 1, metric_count), nan)
for i in range(pvalue_matrix.shape[0]):
pvalue_filename = pvalue_files_templates[template_index].replace(
"XXX", str(prompt_index))
current_yyy = start + i - 1 # Adjust for 0-based index
pvalue_filename = pvalue_filename.replace("YYY", str(current_yyy))
if not exists(pvalue_filename):
raise FileNotFoundError(
f"P-value file {pvalue_filename} does not exist.")
# Read the CSV and flatten to a list
pvalues = read_csv(pvalue_filename, header=None).values.flatten()
pvalue_matrix[i, :] = pvalues
# Apply segment_significance to each column
index_p_tilde = []
for col in range(pvalue_matrix.shape[1]):
pvalues = pvalue_matrix[:, col]
if isnan(pvalues).any():
index_p_tilde.append([None, None])
else:
significance = segment_significance(pvalues.tolist())
index_p_tilde.append(significance)
# Convert to DataFrame for saving
index_p_tilde_df = DataFrame(index_p_tilde)
# Save to CSV without headers and index
seedbs_dir = dirname(seedbs_filename)
if not exists(seedbs_dir):
makedirs(seedbs_dir)
index_p_tilde_df.to_csv(seedbs_filename, sep=",",
header=False, index=False)