forked from quantumlib/Cirq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples_test.py
313 lines (229 loc) · 9.12 KB
/
examples_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# pylint: disable=wrong-or-nonexistent-copyright-notice
import itertools
import networkx
import numpy as np
import pytest
import matplotlib.pyplot as plt
import cirq
import examples.basic_arithmetic
import examples.bb84
import examples.bell_inequality
import examples.bernstein_vazirani
import examples.bcs_mean_field
import examples.deutsch
import examples.grover
import examples.heatmaps
import examples.hello_qubit
import examples.hhl
import examples.hidden_shift_algorithm
import examples.noisy_simulation_example
import examples.phase_estimator
import examples.qaoa
import examples.quantum_fourier_transform
import examples.quantum_teleportation
import examples.qubit_characterizations_example
import examples.shor
import examples.simon_algorithm
import examples.superdense_coding
import examples.swap_networks
import examples.two_qubit_gate_compilation
from examples.shors_code import OneQubitShorsCode
def test_example_runs_bernstein_vazirani():
examples.bernstein_vazirani.main(qubit_count=3)
# Check empty oracle case. Cover both biases.
a = cirq.NamedQubit('a')
assert list(examples.bernstein_vazirani.make_oracle([], a, [], False)) == []
assert list(examples.bernstein_vazirani.make_oracle([], a, [], True)) == [cirq.X(a)]
def test_example_runs_simon():
examples.simon_algorithm.main()
def test_example_runs_hidden_shift():
examples.hidden_shift_algorithm.main()
def test_example_runs_deutsch():
examples.deutsch.main()
def test_example_runs_hello_qubit():
examples.hello_qubit.main()
def test_example_runs_bell_inequality():
examples.bell_inequality.main()
def test_example_runs_bb84():
examples.bb84.main()
def test_example_runs_quantum_fourier_transform():
examples.quantum_fourier_transform.main()
def test_example_runs_bcs_mean_field():
examples.bcs_mean_field.main()
def test_example_runs_grover():
examples.grover.main()
def test_example_runs_basic_arithmetic():
examples.basic_arithmetic.main(n=2)
def test_example_runs_phase_estimator():
examples.phase_estimator.main(qnums=(2,), repetitions=2)
@pytest.mark.usefixtures('closefigures')
def test_example_heatmaps():
pytest.importorskip("cirq_google")
plt.switch_backend('agg')
examples.heatmaps.main()
def test_example_runs_qaoa():
examples.qaoa.main(repetitions=10, maxiter=5, use_boolean_hamiltonian_gate=False)
examples.qaoa.main(repetitions=10, maxiter=5, use_boolean_hamiltonian_gate=True)
def test_example_qaoa_same_unitary():
n = 6
p = 2
qubits = cirq.LineQubit.range(n)
graph = networkx.random_regular_graph(3, n)
betas = np.random.uniform(-np.pi, np.pi, size=p)
gammas = np.random.uniform(-np.pi, np.pi, size=p)
circuits = [
examples.qaoa.qaoa_max_cut_circuit(
qubits, betas, gammas, graph, use_boolean_hamiltonian_gate
)
for use_boolean_hamiltonian_gate in [True, False]
]
assert cirq.allclose_up_to_global_phase(
cirq.unitary(circuits[0]), cirq.unitary(circuits[1]), atol=1e-8
)
def test_example_runs_quantum_teleportation():
_, teleported = examples.quantum_teleportation.main(seed=12)
assert np.allclose(np.array([0.07023552, -0.9968105, -0.03788921]), teleported)
def test_example_runs_superdense_coding():
examples.superdense_coding.main()
def test_example_runs_hhl():
examples.hhl.main()
@pytest.mark.usefixtures('closefigures')
def test_example_runs_qubit_characterizations():
examples.qubit_characterizations_example.main(
minimum_cliffords=2, maximum_cliffords=6, cliffords_step=2
)
def test_example_swap_networks():
examples.swap_networks.main()
def test_example_noisy_simulation():
examples.noisy_simulation_example.main()
def test_example_shor_modular_exp_register_size():
with pytest.raises(ValueError):
_ = examples.shor.ModularExp(target=[2, 2], exponent=[2, 2, 2], base=4, modulus=5)
def test_example_shor_modular_exp_register_type():
operation = examples.shor.ModularExp(target=[2, 2, 2], exponent=[2, 2], base=4, modulus=5)
with pytest.raises(ValueError):
_ = operation.with_registers([2, 2, 2])
with pytest.raises(ValueError):
_ = operation.with_registers(1, [2, 2, 2], 4, 5)
with pytest.raises(ValueError):
_ = operation.with_registers([2, 2, 2], [2, 2, 2], [2, 2, 2], 5)
with pytest.raises(ValueError):
_ = operation.with_registers([2, 2, 2], [2, 2, 2], 4, [2, 2, 2])
def test_example_shor_modular_exp_registers():
target = [2, 2, 2]
exponent = [2, 2]
operation = examples.shor.ModularExp(target, exponent, 4, 5)
assert operation.registers() == (target, exponent, 4, 5)
new_target = [2, 2, 2]
new_exponent = [2, 2, 2, 2]
new_operation = operation.with_registers(new_target, new_exponent, 6, 7)
assert new_operation.registers() == (new_target, new_exponent, 6, 7)
def test_example_shor_modular_exp_diagram():
target = [2, 2, 2]
exponent = [2, 2]
gate = examples.shor.ModularExp(target, exponent, 4, 5)
circuit = cirq.Circuit(gate.on(*cirq.LineQubit.range(5)))
cirq.testing.assert_has_diagram(
circuit,
"""
0: ───ModularExp(t*4**e % 5)───
│
1: ───t1───────────────────────
│
2: ───t2───────────────────────
│
3: ───e0───────────────────────
│
4: ───e1───────────────────────
""",
)
gate = gate.with_registers(target, 2, 4, 5)
circuit = cirq.Circuit(gate.on(*cirq.LineQubit.range(3)))
cirq.testing.assert_has_diagram(
circuit,
"""
0: ───ModularExp(t*4**2 % 5)───
│
1: ───t1───────────────────────
│
2: ───t2───────────────────────
""",
)
def assert_order(r: int, x: int, n: int) -> None:
"""Assert that r is the order of x modulo n."""
y = x
for _ in range(1, r):
assert y % n != 1
y *= x
assert y % n == 1
@pytest.mark.parametrize(
'x, n', ((2, 3), (5, 6), (2, 7), (6, 7), (5, 8), (6, 11), (6, 49), (7, 810))
)
def test_example_shor_naive_order_finder(x, n):
r = examples.shor.naive_order_finder(x, n)
assert_order(r, x, n)
@pytest.mark.parametrize('x, n', ((2, 3), (5, 6), (2, 7), (6, 7)))
def test_example_shor_quantum_order_finder(x, n):
r = None
for _ in range(15):
r = examples.shor.quantum_order_finder(x, n)
if r is not None:
break
assert_order(r, x, n)
@pytest.mark.parametrize('x, n', ((1, 7), (7, 7)))
def test_example_shor_naive_order_finder_invalid_x(x, n):
with pytest.raises(ValueError):
_ = examples.shor.naive_order_finder(x, n)
@pytest.mark.parametrize('x, n', ((1, 7), (7, 7)))
def test_example_shor_quantum_order_finder_invalid_x(x, n):
with pytest.raises(ValueError):
_ = examples.shor.quantum_order_finder(x, n)
@pytest.mark.parametrize('n', (4, 6, 15, 125, 101 * 103, 127 * 127))
def test_example_shor_find_factor_with_composite_n_and_naive_order_finder(n):
d = examples.shor.find_factor(n, examples.shor.naive_order_finder)
assert 1 < d < n
assert n % d == 0
@pytest.mark.parametrize('n', (4, 6, 15, 125))
def test_example_shor_find_factor_with_composite_n_and_quantum_order_finder(n):
d = examples.shor.find_factor(n, examples.shor.quantum_order_finder)
assert 1 < d < n
assert n % d == 0
@pytest.mark.parametrize(
'n, order_finder',
itertools.product(
(2, 3, 5, 11, 101, 127, 907),
(examples.shor.naive_order_finder, examples.shor.quantum_order_finder),
),
)
def test_example_shor_find_factor_with_prime_n(n, order_finder):
d = examples.shor.find_factor(n, order_finder)
assert d is None
@pytest.mark.parametrize('n', (2, 3, 15, 17, 2**89 - 1))
def test_example_runs_shor_valid(n):
examples.shor.main(n=n)
@pytest.mark.parametrize('n', (-1, 0, 1))
def test_example_runs_shor_invalid(n):
with pytest.raises(ValueError):
examples.shor.main(n=n)
def test_example_qec_single_qubit():
mycode1 = OneQubitShorsCode()
my_circuit1 = cirq.Circuit(mycode1.encode())
my_circuit1 += cirq.Circuit(mycode1.correct())
my_circuit1 += cirq.measure(mycode1.physical_qubits[0])
sim1 = cirq.DensityMatrixSimulator()
result1 = sim1.run(my_circuit1, repetitions=1)
assert result1.measurements['q(0)'] == [[0]]
mycode2 = OneQubitShorsCode()
my_circuit2 = cirq.Circuit(mycode2.apply_gate(cirq.X, 0))
with pytest.raises(IndexError):
mycode2.apply_gate(cirq.Z, 89)
my_circuit2 += cirq.Circuit(mycode2.encode())
my_circuit2 += cirq.Circuit(mycode2.correct())
my_circuit2 += cirq.measure(mycode2.physical_qubits[0])
sim2 = cirq.DensityMatrixSimulator()
result2 = sim2.run(my_circuit2, repetitions=1)
assert result2.measurements['q(0)'] == [[1]]
@pytest.mark.usefixtures('closefigures')
def test_two_qubit_gate_compilation_example():
plt.switch_backend('agg')
examples.two_qubit_gate_compilation.main(samples=10, max_infidelity=0.3)