Skip to content

Commit 4c64dbb

Browse files
author
Mofan Zhou
committed
update theano TUT
1 parent d12705d commit 4c64dbb

File tree

2 files changed

+137
-2
lines changed

2 files changed

+137
-2
lines changed

theanoTUT/theano12_regularization/for_you_to_practice.py

+64-1
Original file line numberDiff line numberDiff line change
@@ -7,4 +7,67 @@
77
"""
88
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
99
"""
10-
import theano
10+
import theano
11+
from sklearn.datasets import load_boston
12+
import theano.tensor as T
13+
import numpy as np
14+
15+
16+
class Layer(object):
17+
def __init__(self, inputs, in_size, out_size, activation_function=None):
18+
self.W = theano.shared(np.random.normal(0, 1, (in_size, out_size)))
19+
self.b = theano.shared(np.zeros((out_size, )) + 0.1)
20+
self.Wx_plus_b = T.dot(inputs, self.W) + self.b
21+
self.activation_function = activation_function
22+
if activation_function is None:
23+
self.outputs = self.Wx_plus_b
24+
else:
25+
self.outputs = self.activation_function(self.Wx_plus_b)
26+
27+
28+
def minmax_normalization(data):
29+
xs_max = np.max(data, axis=0)
30+
xs_min = np.min(data, axis=0)
31+
xs = (1 - 0) * (data - xs_min) / (xs_max - xs_min) + 0
32+
return xs
33+
34+
np.random.seed(100)
35+
x_data = load_boston().data
36+
# minmax normalization, rescale the inputs
37+
x_data = minmax_normalization(x_data)
38+
y_data = load_boston().target[:, np.newaxis]
39+
40+
# cross validation, train test data split
41+
x_train, y_train = x_data[:400], y_data[:400]
42+
x_test, y_test = x_data[400:], y_data[400:]
43+
44+
x = T.dmatrix("x")
45+
y = T.dmatrix("y")
46+
47+
l1 = Layer(x, 13, 50, T.tanh)
48+
l2 = Layer(l1.outputs, 50, 1, None)
49+
50+
# the way to compute cost
51+
cost = T.mean(T.square(l2.outputs - y))
52+
53+
gW1, gb1, gW2, gb2 = T.grad(cost, [l1.W, l1.b, l2.W, l2.b])
54+
55+
learning_rate = 0.01
56+
train = theano.function(
57+
inputs=[x, y],
58+
updates=[(l1.W, l1.W - learning_rate * gW1),
59+
(l1.b, l1.b - learning_rate * gb1),
60+
(l2.W, l2.W - learning_rate * gW2),
61+
(l2.b, l2.b - learning_rate * gb2)])
62+
63+
compute_cost = theano.function(inputs=[x, y], outputs=cost)
64+
65+
# record cost
66+
67+
for i in range(1000):
68+
train(x_train, y_train)
69+
if i % 10 == 0:
70+
# record cost
71+
pass
72+
73+
# plot cost history

theanoTUT/theano12_regularization/full_code.py

+73-1
Original file line numberDiff line numberDiff line change
@@ -7,4 +7,76 @@
77
"""
88
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
99
"""
10-
import theano
10+
import theano
11+
from sklearn.datasets import load_boston
12+
import theano.tensor as T
13+
import numpy as np
14+
import matplotlib.pyplot as plt
15+
16+
17+
class Layer(object):
18+
def __init__(self, inputs, in_size, out_size, activation_function=None):
19+
self.W = theano.shared(np.random.normal(0, 1, (in_size, out_size)))
20+
self.b = theano.shared(np.zeros((out_size, )) + 0.1)
21+
self.Wx_plus_b = T.dot(inputs, self.W) + self.b
22+
self.activation_function = activation_function
23+
if activation_function is None:
24+
self.outputs = self.Wx_plus_b
25+
else:
26+
self.outputs = self.activation_function(self.Wx_plus_b)
27+
28+
29+
def minmax_normalization(data):
30+
xs_max = np.max(data, axis=0)
31+
xs_min = np.min(data, axis=0)
32+
xs = (1 - 0) * (data - xs_min) / (xs_max - xs_min) + 0
33+
return xs
34+
35+
np.random.seed(100)
36+
x_data = load_boston().data
37+
# minmax normalization, rescale the inputs
38+
x_data = minmax_normalization(x_data)
39+
y_data = load_boston().target[:, np.newaxis]
40+
41+
# cross validation, train test data split
42+
x_train, y_train = x_data[:400], y_data[:400]
43+
x_test, y_test = x_data[400:], y_data[400:]
44+
45+
x = T.dmatrix("x")
46+
y = T.dmatrix("y")
47+
48+
l1 = Layer(x, 13, 50, T.tanh)
49+
l2 = Layer(l1.outputs, 50, 1, None)
50+
51+
# the way to compute cost
52+
cost = T.mean(T.square(l2.outputs - y)) # without regularization
53+
# cost = T.mean(T.square(l2.outputs - y)) + 0.1 * (l1.W ** 2).sum() + (l2.W ** 2).sum() # with l2 regularization
54+
# cost = T.mean(T.square(l2.outputs - y)) + 0.1 * abs(l1.W).sum() + abs(l2.W).sum() # with l1 regularization
55+
gW1, gb1, gW2, gb2 = T.grad(cost, [l1.W, l1.b, l2.W, l2.b])
56+
57+
learning_rate = 0.01
58+
train = theano.function(
59+
inputs=[x, y],
60+
updates=[(l1.W, l1.W - learning_rate * gW1),
61+
(l1.b, l1.b - learning_rate * gb1),
62+
(l2.W, l2.W - learning_rate * gW2),
63+
(l2.b, l2.b - learning_rate * gb2)])
64+
65+
compute_cost = theano.function(inputs=[x, y], outputs=cost)
66+
67+
# record cost
68+
train_err_list = []
69+
test_err_list = []
70+
learning_time = []
71+
for i in range(1000):
72+
train(x_train, y_train)
73+
if i % 10 == 0:
74+
# record cost
75+
train_err_list.append(compute_cost(x_train, y_train))
76+
test_err_list.append(compute_cost(x_test, y_test))
77+
learning_time.append(i)
78+
79+
# plot cost history
80+
plt.plot(learning_time, train_err_list, 'r-')
81+
plt.plot(learning_time, test_err_list, 'b--')
82+
plt.show()

0 commit comments

Comments
 (0)