7
7
"""
8
8
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
9
9
"""
10
- import theano
10
+ import theano
11
+ from sklearn .datasets import load_boston
12
+ import theano .tensor as T
13
+ import numpy as np
14
+ import matplotlib .pyplot as plt
15
+
16
+
17
+ class Layer (object ):
18
+ def __init__ (self , inputs , in_size , out_size , activation_function = None ):
19
+ self .W = theano .shared (np .random .normal (0 , 1 , (in_size , out_size )))
20
+ self .b = theano .shared (np .zeros ((out_size , )) + 0.1 )
21
+ self .Wx_plus_b = T .dot (inputs , self .W ) + self .b
22
+ self .activation_function = activation_function
23
+ if activation_function is None :
24
+ self .outputs = self .Wx_plus_b
25
+ else :
26
+ self .outputs = self .activation_function (self .Wx_plus_b )
27
+
28
+
29
+ def minmax_normalization (data ):
30
+ xs_max = np .max (data , axis = 0 )
31
+ xs_min = np .min (data , axis = 0 )
32
+ xs = (1 - 0 ) * (data - xs_min ) / (xs_max - xs_min ) + 0
33
+ return xs
34
+
35
+ np .random .seed (100 )
36
+ x_data = load_boston ().data
37
+ # minmax normalization, rescale the inputs
38
+ x_data = minmax_normalization (x_data )
39
+ y_data = load_boston ().target [:, np .newaxis ]
40
+
41
+ # cross validation, train test data split
42
+ x_train , y_train = x_data [:400 ], y_data [:400 ]
43
+ x_test , y_test = x_data [400 :], y_data [400 :]
44
+
45
+ x = T .dmatrix ("x" )
46
+ y = T .dmatrix ("y" )
47
+
48
+ l1 = Layer (x , 13 , 50 , T .tanh )
49
+ l2 = Layer (l1 .outputs , 50 , 1 , None )
50
+
51
+ # the way to compute cost
52
+ cost = T .mean (T .square (l2 .outputs - y )) # without regularization
53
+ # cost = T.mean(T.square(l2.outputs - y)) + 0.1 * (l1.W ** 2).sum() + (l2.W ** 2).sum() # with l2 regularization
54
+ # cost = T.mean(T.square(l2.outputs - y)) + 0.1 * abs(l1.W).sum() + abs(l2.W).sum() # with l1 regularization
55
+ gW1 , gb1 , gW2 , gb2 = T .grad (cost , [l1 .W , l1 .b , l2 .W , l2 .b ])
56
+
57
+ learning_rate = 0.01
58
+ train = theano .function (
59
+ inputs = [x , y ],
60
+ updates = [(l1 .W , l1 .W - learning_rate * gW1 ),
61
+ (l1 .b , l1 .b - learning_rate * gb1 ),
62
+ (l2 .W , l2 .W - learning_rate * gW2 ),
63
+ (l2 .b , l2 .b - learning_rate * gb2 )])
64
+
65
+ compute_cost = theano .function (inputs = [x , y ], outputs = cost )
66
+
67
+ # record cost
68
+ train_err_list = []
69
+ test_err_list = []
70
+ learning_time = []
71
+ for i in range (1000 ):
72
+ train (x_train , y_train )
73
+ if i % 10 == 0 :
74
+ # record cost
75
+ train_err_list .append (compute_cost (x_train , y_train ))
76
+ test_err_list .append (compute_cost (x_test , y_test ))
77
+ learning_time .append (i )
78
+
79
+ # plot cost history
80
+ plt .plot (learning_time , train_err_list , 'r-' )
81
+ plt .plot (learning_time , test_err_list , 'b--' )
82
+ plt .show ()
0 commit comments