forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_constraint.cc
627 lines (594 loc) · 21.9 KB
/
create_constraint.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#include "drake/solvers/create_constraint.h"
#include <algorithm>
#include <cmath>
#include <sstream>
#include "drake/common/symbolic.h"
#include "drake/math/quadratic_form.h"
#include "drake/solvers/symbolic_extraction.h"
namespace drake {
namespace solvers {
namespace internal {
using std::find;
using std::isfinite;
using std::make_shared;
using std::numeric_limits;
using std::ostringstream;
using std::runtime_error;
using std::set;
using std::shared_ptr;
using std::unordered_map;
using std::vector;
using symbolic::Expression;
using symbolic::Formula;
using symbolic::Polynomial;
using symbolic::Variable;
using symbolic::Variables;
using internal::DecomposeLinearExpression;
using internal::DecomposeQuadraticPolynomial;
using internal::ExtractAndAppendVariablesFromExpression;
using internal::ExtractVariablesFromExpression;
using internal::SymbolicError;
Binding<Constraint> ParseConstraint(
const Eigen::Ref<const VectorX<Expression>>& v,
const Eigen::Ref<const Eigen::VectorXd>& lb,
const Eigen::Ref<const Eigen::VectorXd>& ub) {
DRAKE_ASSERT(v.rows() == lb.rows() && v.rows() == ub.rows());
bool is_linear = true;
// Check that all elements are linear.
for (int i = 0; i < v.size(); ++i) {
if (!v(i).is_polynomial()) {
is_linear = false;
break;
}
const Polynomial p{v(i)};
if (p.TotalDegree() > 1) {
is_linear = false;
break;
}
}
if (!is_linear) {
auto constraint = make_shared<ExpressionConstraint>(v, lb, ub);
return CreateBinding(constraint, constraint->vars());
} // else, continue on to linear-specific version below.
if ((ub-lb).isZero()) {
return ParseLinearEqualityConstraint(v, lb);
}
// Setup map_var_to_index and var_vec.
// such that map_var_to_index[var(i)] = i
unordered_map<Variable::Id, int> map_var_to_index;
VectorXDecisionVariable vars(0);
for (int i = 0; i < v.size(); ++i) {
ExtractAndAppendVariablesFromExpression(v(i), &vars, &map_var_to_index);
}
// Construct A, new_lb, new_ub. map_var_to_index is used here.
Eigen::MatrixXd A{Eigen::MatrixXd::Zero(v.size(), vars.size())};
Eigen::VectorXd new_lb{v.size()};
Eigen::VectorXd new_ub{v.size()};
// We will determine if lb <= v <= ub is a bounding box constraint, namely
// x_lb <= x <= x_ub.
bool is_v_bounding_box = true;
for (int i = 0; i < v.size(); ++i) {
double constant_term = 0;
int num_vi_variables = DecomposeLinearExpression(v(i), map_var_to_index,
A.row(i), &constant_term);
if (num_vi_variables == 0 &&
!(lb(i) <= constant_term && constant_term <= ub(i))) {
// Unsatisfiable constraint with no variables, such as 1 <= 0 <= 2
throw SymbolicError(v(i), lb(i), ub(i),
"unsatisfiable but called with"
" ParseConstraint");
} else {
new_lb(i) = lb(i) - constant_term;
new_ub(i) = ub(i) - constant_term;
DRAKE_DEMAND(!std::isnan(new_lb(i)));
DRAKE_DEMAND(!std::isnan(new_ub(i)));
if (num_vi_variables != 1) {
is_v_bounding_box = false;
}
}
}
if (is_v_bounding_box) {
// If every lb(i) <= v(i) <= ub(i) is a bounding box constraint, then
// formulate a bounding box constraint x_lb <= x <= x_ub
VectorXDecisionVariable bounding_box_x(v.size());
for (int i = 0; i < v.size(); ++i) {
// v(i) is in the form of c * x
double x_coeff = 0;
for (const auto& x : v(i).GetVariables()) {
const double coeff = A(i, map_var_to_index[x.get_id()]);
if (coeff != 0) {
x_coeff += coeff;
bounding_box_x(i) = x;
}
}
if (x_coeff > 0) {
new_lb(i) /= x_coeff;
new_ub(i) /= x_coeff;
} else {
const double lb_i = new_lb(i);
new_lb(i) = new_ub(i) / x_coeff;
new_ub(i) = lb_i / x_coeff;
}
DRAKE_DEMAND(!std::isnan(new_lb(i)));
DRAKE_DEMAND(!std::isnan(new_ub(i)));
}
return CreateBinding(make_shared<BoundingBoxConstraint>(new_lb, new_ub),
bounding_box_x);
}
return CreateBinding(make_shared<LinearConstraint>(A, new_lb, new_ub), vars);
}
std::unique_ptr<Binding<Constraint>> MaybeParseLinearConstraint(
const symbolic::Expression& e, double lb, double ub) {
if (!e.is_polynomial()) {
return std::unique_ptr<Binding<Constraint>>{nullptr};
}
const Polynomial p{e};
if (p.TotalDegree() > 1) {
return std::unique_ptr<Binding<Constraint>>{nullptr};
}
// If p only has one indeterminates, then we can always return a bounding box
// constraint.
if (p.indeterminates().size() == 1) {
// We decompose the polynomial `p` into `constant_term + coeff * var`.
double coeff = 0;
double constant_term = 0;
for (const auto& term : p.monomial_to_coefficient_map()) {
if (term.first.total_degree() == 0) {
constant_term += get_constant_value(term.second);
} else {
coeff += get_constant_value(term.second);
}
}
// coeff should not be 0. The symbolic polynomial should be able to detect
// when the coefficient is 0, and remove it from
// monomial_to_coefficient_map.
DRAKE_DEMAND(coeff != 0);
double var_lower{}, var_upper{};
if (coeff > 0) {
var_lower = (lb - constant_term) / coeff;
var_upper = (ub - constant_term) / coeff;
} else {
var_lower = (ub - constant_term) / coeff;
var_upper = (lb - constant_term) / coeff;
}
return std::make_unique<Binding<Constraint>>(
std::make_shared<BoundingBoxConstraint>(Vector1d(var_lower),
Vector1d(var_upper)),
Vector1<symbolic::Variable>(*(p.indeterminates().begin())));
}
VectorX<symbolic::Variable> bound_variables(p.indeterminates().size());
std::unordered_map<symbolic::Variable::Id, int> map_var_to_index;
int index = 0;
for (const auto& var : p.indeterminates()) {
bound_variables(index) = var;
map_var_to_index.emplace(var.get_id(), index++);
}
Eigen::RowVectorXd a(p.indeterminates().size());
a.setZero();
double lower = lb;
double upper = ub;
for (const auto& term : p.monomial_to_coefficient_map()) {
if (term.first.total_degree() == 0) {
const double coeff = get_constant_value(term.second);
lower -= coeff;
upper -= coeff;
} else {
const int var_index =
map_var_to_index.at(term.first.GetVariables().begin()->get_id());
a(var_index) = get_constant_value(term.second);
}
}
if (lower == upper) {
return std::make_unique<Binding<Constraint>>(
std::make_shared<LinearEqualityConstraint>(a, Vector1d(lower)),
bound_variables);
} else {
return std::make_unique<Binding<Constraint>>(
std::make_shared<LinearConstraint>(a, Vector1d(lower), Vector1d(upper)),
bound_variables);
}
}
namespace {
// Given two symbolic expressions, e1 and e2, finds an equi-satisfiable
// constraint `e <= c` for `e1 <= e2`. First, it decomposes e1 and e2 into `e1 =
// c1 + e1'` and `e2 = c2 + e2'`. Then it does the following case analysis.
//
// Case 1: If c1 or c2 are finite, we use the following derivations:
//
// e1 <= e2
// -> c1 + e1' <= c2 + e2'
// -> e1' - e2' <= c2 - c1.
//
// and set e := e1' - e2' and c := c2 - c1.
//
// Case 2: If both c1 and c2 are infinite. We use the following table
//
// c1 c2
// --------------------------
// +∞ <= +∞ Trivially holds.
// +∞ <= -∞ Infeasible.
// -∞ <= +∞ Trivially holds.
// -∞ <= -∞ Trivially holds.
//
// and throw an exception for all the cases.
//
// Note that c1 (resp. c2) can be infinite only if e1 (resp. e2) is zero.
// Otherwise, it throws an exception. To understand this side-condition,
// consider the following example:
//
// e1 = 0
// e2 = x + ∞
//
// e1 <= e2 := 0 <= x + ∞ -- (1)
//
// Without the side-condition, we might derive the following (wrong)
// equi-satisfiable constraint:
//
// -x <= ∞ -- (2)
//
// This is problematic because x ↦ -∞ is a satisfying constraint of
// (2) but it's not for (1) since we have:
//
// 0 <= -∞ + ∞
// 0 <= nan
// False.
//
void FindBound(const Expression& e1, const Expression& e2, Expression* const e,
double* const c) {
DRAKE_ASSERT(e);
DRAKE_ASSERT(c);
double c1 = 0;
double c2 = 0;
const Expression e1_expanded{e1.Expand()};
if (is_constant(e1_expanded)) {
c1 = get_constant_value(e1_expanded);
} else if (is_addition(e1_expanded)) {
c1 = get_constant_in_addition(e1_expanded);
if (!isfinite(c1)) {
ostringstream oss;
oss << "FindBound() cannot handle the constraint: " << e1 << " <= " << e2
<< " because " << e1
<< " has infinity in the constant term after expansion.";
throw runtime_error{oss.str()};
}
*e = Expression::Zero();
for (const auto& p : get_expr_to_coeff_map_in_addition(e1_expanded)) {
*e += p.first * p.second;
}
} else {
*e = e1_expanded;
}
const Expression e2_expanded{e2.Expand()};
if (is_constant(e2_expanded)) {
c2 = get_constant_value(e2_expanded);
} else if (is_addition(e2_expanded)) {
c2 = get_constant_in_addition(e2_expanded);
if (!isfinite(c2)) {
ostringstream oss;
oss << "FindBound() cannot handle the constraint: " << e1 << " <= " << e2
<< " because " << e2
<< " has infinity in the constant term after expansion.";
throw runtime_error{oss.str()};
}
for (const auto& p : get_expr_to_coeff_map_in_addition(e2_expanded)) {
*e -= p.first * p.second;
}
} else {
*e -= e2_expanded;
}
if (isfinite(c1) || isfinite(c2)) {
*c = c2 - c1;
return;
}
// Handle special cases where both of `c1` and `c2` are infinite.
// c1 c2
// --------------------------
// +∞ <= +∞ Trivially holds.
// +∞ <= -∞ Infeasible.
// -∞ <= +∞ Trivially holds.
// -∞ <= -∞ Trivially holds.
ostringstream oss;
if (c1 == numeric_limits<double>::infinity() &&
c2 == -numeric_limits<double>::infinity()) {
oss << "FindBound() detects an infeasible constraint: " << e1
<< " <= " << e2 << ".";
throw runtime_error{oss.str()};
} else {
oss << "FindBound() detects a trivial constraint: " << e1 << " <= " << e2
<< ".";
throw runtime_error{oss.str()};
}
}
} // namespace
Binding<Constraint> ParseConstraint(const set<Formula>& formulas) {
const auto n = formulas.size();
// Decomposes a set of formulas into a 1D-vector of expressions, `v`, and two
// 1D-vector of double `lb` and `ub`.
VectorX<Expression> v{n};
Eigen::VectorXd lb{n};
Eigen::VectorXd ub{n};
int i{0}; // index variable used in the loop
// After the following loop, we call `ParseLinearEqualityConstraint`
// if `are_all_formulas_equal` is still true. Otherwise, we call
// `ParseLinearConstraint`. on the value of this Boolean flag.
bool are_all_formulas_equal{true};
bool is_linear{true};
for (const Formula& f : formulas) {
if (is_equal_to(f)) {
// f := (lhs == rhs)
// (lhs - rhs == 0)
v(i) = get_lhs_expression(f) - get_rhs_expression(f);
lb(i) = 0.0;
ub(i) = 0.0;
} else if (is_less_than_or_equal_to(f)) {
// f := (lhs <= rhs)
const Expression& lhs = get_lhs_expression(f);
const Expression& rhs = get_rhs_expression(f);
lb(i) = -numeric_limits<double>::infinity();
FindBound(lhs, rhs, &v(i), &ub(i));
are_all_formulas_equal = false;
} else if (is_greater_than_or_equal_to(f)) {
// f := (lhs >= rhs)
const Expression& lhs = get_lhs_expression(f);
const Expression& rhs = get_rhs_expression(f);
lb(i) = -numeric_limits<double>::infinity();
FindBound(rhs, lhs, &v(i), &ub(i));
are_all_formulas_equal = false;
} else {
ostringstream oss;
oss << "ParseConstraint(const set<Formula>& "
<< "formulas) is called while its argument 'formulas' includes "
<< "a formula " << f
<< " which is not a relational formula using one of {==, <=, >=} "
<< "operators.";
throw runtime_error(oss.str());
}
// Check that elements are linear.
if (is_linear) {
if (!v(i).is_polynomial()) {
is_linear = false;
} else {
const Polynomial p{v(i)};
if (p.TotalDegree() > 1) {
is_linear = false;
}
}
}
++i;
}
if (are_all_formulas_equal && is_linear) {
return ParseLinearEqualityConstraint(v, lb);
} else {
return ParseConstraint(v, lb, ub);
}
}
Binding<Constraint> ParseConstraint(const Formula& f) {
if (is_equal_to(f)) {
// e1 == e2
const Expression& e1{get_lhs_expression(f)};
const Expression& e2{get_rhs_expression(f)};
return ParseConstraint(e1 - e2, 0.0, 0.0);
} else if (is_greater_than_or_equal_to(f)) {
// e1 >= e2
const Expression& e1{get_lhs_expression(f)};
const Expression& e2{get_rhs_expression(f)};
Expression e;
double ub = 0.0;
FindBound(e2, e1, &e, &ub);
return ParseConstraint(e, -numeric_limits<double>::infinity(), ub);
} else if (is_less_than_or_equal_to(f)) {
// e1 <= e2
const Expression& e1{get_lhs_expression(f)};
const Expression& e2{get_rhs_expression(f)};
Expression e;
double ub = 0.0;
FindBound(e1, e2, &e, &ub);
return ParseConstraint(e, -numeric_limits<double>::infinity(), ub);
}
if (is_conjunction(f)) {
return ParseConstraint(get_operands(f));
}
ostringstream oss;
oss << "ParseConstraint is called with a formula " << f
<< " which is neither a relational formula using one of {==, <=, >=} "
"operators nor a conjunction of those relational formulas.";
throw runtime_error(oss.str());
}
Binding<LinearEqualityConstraint> ParseLinearEqualityConstraint(
const set<Formula>& formulas) {
const auto n = formulas.size();
// Decomposes a set of formulas, `{e₁₁ == e₁₂, ..., eₙ₁ == eₙ₂}`
// into a 1D-vector of expressions, `v = [e₁₁ - e₁₂, ..., eₙ₁ - eₙ₂]`.
VectorX<symbolic::Expression> v{n};
int i{0}; // index variable used in the loop
for (const symbolic::Formula& f : formulas) {
if (is_equal_to(f)) {
// f := (lhs == rhs)
// (lhs - rhs == 0)
v(i) = get_lhs_expression(f) - get_rhs_expression(f);
} else {
ostringstream oss;
oss << "ParseLinearEqualityConstraint(const "
<< "set<Formula>& formulas) is called while its argument 'formulas' "
<< "includes a non-equality formula " << f << ".";
throw runtime_error(oss.str());
}
++i;
}
return ParseLinearEqualityConstraint(v, Eigen::VectorXd::Zero(n));
}
Binding<LinearEqualityConstraint> ParseLinearEqualityConstraint(
const Formula& f) {
if (is_equal_to(f)) {
// e1 == e2
const Expression& e1{get_lhs_expression(f)};
const Expression& e2{get_rhs_expression(f)};
return ParseLinearEqualityConstraint(e1 - e2, 0.0);
}
if (is_conjunction(f)) {
return ParseLinearEqualityConstraint(get_operands(f));
}
ostringstream oss;
oss << "ParseLinearConstraint is called with a formula " << f
<< " which is neither an equality formula nor a conjunction of equality "
"formulas.";
throw runtime_error(oss.str());
}
Binding<LinearEqualityConstraint> DoParseLinearEqualityConstraint(
const Eigen::Ref<const VectorX<Expression>>& v,
const Eigen::Ref<const Eigen::VectorXd>& b) {
DRAKE_DEMAND(v.rows() == b.rows());
VectorXDecisionVariable vars(0);
unordered_map<Variable::Id, int> map_var_to_index;
for (int i = 0; i < v.rows(); ++i) {
ExtractAndAppendVariablesFromExpression(v(i), &vars, &map_var_to_index);
}
// TODO(hongkai.dai): use sparse matrix.
Eigen::MatrixXd A = Eigen::MatrixXd::Zero(v.rows(), vars.rows());
Eigen::VectorXd beq = Eigen::VectorXd::Zero(v.rows());
for (int i = 0; i < v.rows(); ++i) {
double constant_term(0);
DecomposeLinearExpression(v(i), map_var_to_index, A.row(i), &constant_term);
beq(i) = b(i) - constant_term;
}
return CreateBinding(make_shared<LinearEqualityConstraint>(A, beq), vars);
}
Binding<QuadraticConstraint> ParseQuadraticConstraint(
const symbolic::Expression& e, double lower_bound, double upper_bound) {
// First build an Eigen vector that contains all the bound variables.
auto p = ExtractVariablesFromExpression(e);
const auto& vars_vec = p.first;
const auto& map_var_to_index = p.second;
// Now decompose the expression into coefficients and monomials.
const symbolic::Polynomial poly{e};
Eigen::MatrixXd Q(vars_vec.size(), vars_vec.size());
Eigen::VectorXd b(vars_vec.size());
double constant_term;
// Decompose the polynomial as 0.5xᵀQx + bᵀx + k.
DecomposeQuadraticPolynomial(poly, map_var_to_index, &Q, &b, &constant_term);
// The constraint to be imposed is
// lb - k ≤ 0.5 xᵀQx + bᵀx ≤ ub - k
return CreateBinding(
make_shared<QuadraticConstraint>(Q, b, lower_bound - constant_term,
upper_bound - constant_term),
vars_vec);
}
shared_ptr<Constraint> MakePolynomialConstraint(
const VectorXPoly& polynomials,
const vector<Polynomiald::VarType>& poly_vars, const Eigen::VectorXd& lb,
const Eigen::VectorXd& ub) {
// Polynomials that are actually affine (a sum of linear terms + a
// constant) can be special-cased. Other polynomials are treated as
// generic for now.
// TODO(ggould-tri) There may be other such special easy cases.
bool all_affine = true;
for (int i = 0; i < polynomials.rows(); i++) {
if (!polynomials[i].IsAffine()) {
all_affine = false;
break;
}
}
if (all_affine) {
Eigen::MatrixXd linear_constraint_matrix =
Eigen::MatrixXd::Zero(polynomials.rows(), poly_vars.size());
Eigen::VectorXd linear_constraint_lb = lb;
Eigen::VectorXd linear_constraint_ub = ub;
for (int poly_num = 0; poly_num < polynomials.rows(); poly_num++) {
for (const auto& monomial : polynomials[poly_num].GetMonomials()) {
if (monomial.terms.size() == 0) {
linear_constraint_lb[poly_num] -= monomial.coefficient;
linear_constraint_ub[poly_num] -= monomial.coefficient;
} else {
DRAKE_DEMAND(monomial.terms.size() == 1); // Because isAffine().
const Polynomiald::VarType term_var = monomial.terms[0].var;
int var_num = (find(poly_vars.begin(), poly_vars.end(), term_var) -
poly_vars.begin());
DRAKE_ASSERT(var_num < static_cast<int>(poly_vars.size()));
linear_constraint_matrix(poly_num, var_num) = monomial.coefficient;
}
}
}
if (ub == lb) {
return make_shared<LinearEqualityConstraint>(linear_constraint_matrix,
linear_constraint_ub);
} else {
return make_shared<LinearConstraint>(
linear_constraint_matrix, linear_constraint_lb, linear_constraint_ub);
}
} else {
return make_shared<PolynomialConstraint>(polynomials, poly_vars, lb, ub);
}
}
Binding<LorentzConeConstraint> ParseLorentzConeConstraint(
const Eigen::Ref<const VectorX<Expression>>& v) {
DRAKE_DEMAND(v.rows() >= 2);
Eigen::MatrixXd A{};
Eigen::VectorXd b(v.size());
VectorXDecisionVariable vars{};
DecomposeLinearExpression(v, &A, &b, &vars);
DRAKE_DEMAND(vars.rows() >= 1);
return CreateBinding(make_shared<LorentzConeConstraint>(A, b), vars);
}
Binding<LorentzConeConstraint> ParseLorentzConeConstraint(
const Expression& linear_expr, const Expression& quadratic_expr,
double tol) {
const auto& quadratic_p = ExtractVariablesFromExpression(quadratic_expr);
const auto& quadratic_vars = quadratic_p.first;
const auto& quadratic_var_to_index_map = quadratic_p.second;
const symbolic::Polynomial poly{quadratic_expr};
Eigen::MatrixXd Q(quadratic_vars.size(), quadratic_vars.size());
Eigen::VectorXd b(quadratic_vars.size());
double a;
DecomposeQuadraticPolynomial(poly, quadratic_var_to_index_map, &Q, &b, &a);
// The constraint that the linear expression v1 satisfying
// v1 >= sqrt(0.5 * x' * Q * x + b' * x + a), is equivalent to the vector
// [z; y] being within a Lorentz cone, where
// z = v1
// y = C * x + d
// such that yᵀy = 0.5xᵀQx + bᵀx + a
VectorX<Expression> expr{};
Eigen::MatrixXd C;
Eigen::VectorXd d;
std::tie(C, d) = math::DecomposePositiveQuadraticForm(0.5 * Q, b, a, tol);
expr.resize(1 + C.rows());
// expr(0) is z
expr(0) = linear_expr;
// expr.segment(1, C.rows()) = y
expr.segment(1, C.rows()) = C * quadratic_vars + d;
return ParseLorentzConeConstraint(expr);
}
Binding<RotatedLorentzConeConstraint> ParseRotatedLorentzConeConstraint(
const Eigen::Ref<const VectorX<symbolic::Expression>>& v) {
DRAKE_DEMAND(v.rows() >= 3);
Eigen::MatrixXd A{};
Eigen::VectorXd b(v.size());
VectorXDecisionVariable vars{};
DecomposeLinearExpression(v, &A, &b, &vars);
DRAKE_DEMAND(vars.rows() >= 1);
return CreateBinding(std::make_shared<RotatedLorentzConeConstraint>(A, b),
vars);
}
Binding<RotatedLorentzConeConstraint> ParseRotatedLorentzConeConstraint(
const symbolic::Expression& linear_expr1,
const symbolic::Expression& linear_expr2,
const symbolic::Expression& quadratic_expr, double tol) {
const auto& quadratic_p = ExtractVariablesFromExpression(quadratic_expr);
const auto& quadratic_vars = quadratic_p.first;
const auto& quadratic_var_to_index_map = quadratic_p.second;
const symbolic::Polynomial poly{quadratic_expr};
Eigen::MatrixXd Q(quadratic_vars.size(), quadratic_vars.size());
Eigen::VectorXd b(quadratic_vars.size());
double a;
DecomposeQuadraticPolynomial(poly, quadratic_var_to_index_map, &Q, &b, &a);
Eigen::MatrixXd C;
Eigen::VectorXd d;
std::tie(C, d) = math::DecomposePositiveQuadraticForm(0.5 * Q, b, a, tol);
VectorX<symbolic::Expression> expr(2 + C.rows());
expr(0) = linear_expr1;
expr(1) = linear_expr2;
expr.tail(C.rows()) = C * quadratic_vars + d;
return ParseRotatedLorentzConeConstraint(expr);
}
} // namespace internal
} // namespace solvers
} // namespace drake