forked from Jerryzhangzhao/DL_tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2_MNIST_test.py
56 lines (34 loc) · 1.36 KB
/
2_MNIST_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 批次大小
batch_size = 100
# 批次数目
m_batch = mnist.train.num_examples//batch_size
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# 创建一个简单的神经网络
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x, w)+b)
# 二次代价函数
loss = tf.reduce_mean(tf.square(prediction - y))
# 使用梯度下降
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
# 初始化
init = tf.global_variables_initializer()
# argmax 输出维度上的最大值的index
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(41):
for batch in range(m_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys})
acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
print("iter "+ str(epoch) + ", test accuracy: " + str(acc) )