-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinetune_as_p4.py
311 lines (254 loc) · 12.3 KB
/
finetune_as_p4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from __future__ import print_function
import datetime
import os
import time
import sys
import numpy as np
import torch
import torch.utils.data
from torch.utils.data.dataloader import default_collate
from torch import nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
import utils
from scheduler import WarmupMultiStepLR
from datasets.AS_base import SegDataset
import models.AS_p4_base as Models
def get_labels_start_end_time(frame_wise_labels, bg_class=["background"]):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i)
return labels, starts, ends
def levenstein(p, y, norm=False):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row+1, n_col+1], np.float)
for i in range(m_row+1):
D[i, 0] = i
for i in range(n_col+1):
D[0, i] = i
for j in range(1, n_col+1):
for i in range(1, m_row+1):
if y[j-1] == p[i-1]:
D[i, j] = D[i-1, j-1]
else:
D[i, j] = min(D[i-1, j] + 1,
D[i, j-1] + 1,
D[i-1, j-1] + 1)
if norm:
score = (1 - D[-1, -1]/max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, norm=True, bg_class=["background"]):
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class=["background"]):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0*intersection / union)*([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn)
def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
metric_logger.add_meter('clips/s', utils.SmoothedValue(window_size=10, fmt='{value:.3f}'))
header = 'Epoch: [{}]'.format(epoch)
for clip, target in metric_logger.log_every(data_loader, print_freq, header):
start_time = time.time()
clip, target = clip.to(device), target.to(device)
output = model(clip)
loss = criterion(output.permute(0,2,1), target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
output = torch.max(output,dim=-1)[1]
# acc = torch.mean(torch.tensor(output==target,dtype=torch.float))
output, target = output.cpu().numpy().astype(np.int32), target.cpu().numpy().astype(np.int32)
acc = np.mean(output == target)
batch_size = clip.shape[0]
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.meters['acc'].update(acc.item(), n=batch_size)
metric_logger.meters['clips/s'].update(batch_size / (time.time() - start_time))
lr_scheduler.step()
sys.stdout.flush()
def evaluate(model, criterion, data_loader, device, len_test):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
acc_list = []
total_correct_class = [0] * 19
total_class = [0] * 19
with torch.no_grad():
overlap = [.1, .25, .5]
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
edit = 0
length = 0
for clip, target in metric_logger.log_every(data_loader, 20, header):
clip = clip.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
output = model(clip)
loss = criterion(output.permute(0,2,1), target)
output = torch.max(output,dim=-1)[1]
output, target = output.cpu().numpy().astype(np.int32), target.cpu().numpy().astype(np.int32)
acc = np.mean(output == target)
# acc = torch.mean(torch.tensor(output==target,dtype=torch.float))
acc_list.append(acc)
for b in range(output.shape[0]):
# print(output[b].shape)
# print(target[b].shape)
edit += edit_score(output[b], target[b])
for b in range(output.shape[0]):
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(output[b], target[b], overlap[s])
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
batch_size = clip.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc'].update(acc.item(), n=batch_size)
metric_logger.synchronize_between_processes()
total_acc = np.mean((np.array(acc_list)))
edit = (1.0 * edit) / len_test
print('Edit: %.4f' % (edit))
f1s = np.array([0, 0 ,0], dtype=float)
for s in range(len(overlap)):
precision = tp[s] / float(tp[s] + fp[s])
recall = tp[s] / float(tp[s] + fn[s])
f1 = 2.0 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) * 100
print('F1@%0.2f: %.4f' % (overlap[s], f1))
f1s[s] = f1
print("total acc:", total_acc)
return total_acc
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
print(args)
print("torch version: ", torch.__version__)
print("torchvision version: ", torchvision.__version__)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device('cuda')
# Data loading code
print("Loading data")
st = time.time()
dataset = SegDataset(root='/datasets/AS_data_base', train=True)
dataset_test = SegDataset(root='/datasets/AS_data_base', train=False)
print("Creating data loaders")
data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True)
print("Creating model")
Model = getattr(Models, args.model)
model = Model(radius=args.radius, nsamples=args.nsamples, spatial_stride=args.spatial_stride,
temporal_kernel_size=args.temporal_kernel_size, temporal_stride=args.temporal_stride,
emb_relu=args.emb_relu,
dim=args.dim, depth=args.depth, heads=args.heads, dim_head=args.dim_head,
mlp_dim=args.mlp_dim, num_classes=19)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.to(device)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
pre_state = checkpoint['model']
# for name in pre_state.keys():
# print(name)
update_dict = {k: v for k, v in pre_state.items() if k.startswith("module.tube_embedding.") or k.startswith("module.transformer1.") or k.startswith("module.pos")}
# update_dict = {k: v for k, v in pre_state.items() if k.startswith("tube_embedding.") or k.startswith("transformer1.") or k.startswith("transformer2.") or k.startswith("pos")}
for name in update_dict.keys():
print(name)
net_state_dict = model.state_dict()
# for name in net_state_dict.keys():
# print(name)
net_state_dict.update(update_dict)
model.load_state_dict(net_state_dict)
# print(pre_state['transformer1.layers.1.0.fn.fn.to_qkv.weight'])
# print(model.state_dict()['transformer1.layers.1.0.fn.fn.to_qkv.weight'])
criterion = nn.CrossEntropyLoss()
lr = args.lr
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)
# convert scheduler to be per iteration, not per epoch, for warmup that lasts
# between different epochs
warmup_iters = args.lr_warmup_epochs * len(data_loader)
lr_milestones = [len(data_loader) * m for m in args.lr_milestones]
lr_scheduler = WarmupMultiStepLR(optimizer, milestones=lr_milestones, gamma=args.lr_gamma, warmup_iters=warmup_iters, warmup_factor=1e-5)
# model_without_ddp = model
print("Start training")
start_time = time.time()
acc = 0
for epoch in range(args.start_epoch, args.epochs):
train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, args.print_freq)
acc = max(acc, evaluate(model, criterion, data_loader_test, device, len(dataset_test)))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='P4Transformer Model Training')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--model', default='P4Transformer', type=str, help='model')
# P4D
parser.add_argument('--radius', default=0.9, type=float, help='radius for the ball query')
parser.add_argument('--nsamples', default=32, type=int, help='number of neighbors for the ball query')
parser.add_argument('--spatial-stride', default=32, type=int, help='spatial subsampling rate')
parser.add_argument('--temporal-kernel-size', default=3, type=int, help='temporal kernel size')
parser.add_argument('--temporal-stride', default=1, type=int, help='temporal stride')
# embedding
parser.add_argument('--emb-relu', default=False, action='store_true')
# transformer
parser.add_argument('--dim', default=2048, type=int, help='transformer dim')
parser.add_argument('--depth', default=5, type=int, help='transformer depth')
parser.add_argument('--heads', default=8, type=int, help='transformer head')
parser.add_argument('--dim-head', default=128, type=int, help='transformer dim for each head')
parser.add_argument('--mlp-dim', default=1024, type=int, help='transformer mlp dim')
# training
parser.add_argument('-b', '--batch-size', default=8, type=int)
parser.add_argument('--epochs', default=50, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N', help='number of data loading workers (default: 16)')
parser.add_argument('--lr', default=0.05, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay')
parser.add_argument('--lr-milestones', nargs='+', default=[20, 35], type=int, help='decrease lr on milestones')
parser.add_argument('--lr-gamma', default=0.5, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--lr-warmup-epochs', default=5, type=int, help='number of warmup epochs')
# output
parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
parser.add_argument('--output-dir', default='', type=str, help='path where to save')
# resume
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='start epoch')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)