Skip to content

A tabular data structure (aka a data frame) based on the Eclipse Collections framework

License

Notifications You must be signed in to change notification settings

donraab/dataframe-ec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dataframe-ec

A tabular data structure (aka a data frame) based on the Eclipse Collections framework. The underlying data frame structure is columnar, with focus on memory optimization achieved by using efficient Eclipse Collections data structures and APIs.

For more on Eclipse Collections see: https://www.eclipse.org/collections/.

Where to Get It

Get the latest release of dataframe-ec here:

<dependency>
  <groupId>io.github.vmzakharov</groupId>
  <artifactId>dataframe-ec</artifactId>
  <version>0.20.0</version>
</dependency>

Note that starting with the release 0.20.0, dataframe-ec is compatible with JDK 17+. The last release of dataframe-ec to support Java 8+ is 0.19.8 which can be found at these coordinates:

<dependency>
  <groupId>io.github.vmzakharov</groupId>
  <artifactId>dataframe-ec</artifactId>
  <version>0.19.8</version>
</dependency>

Code Kata

Learn dataframe-ec with a Kata! Check out dataframe-ec kata, an easy and fun way to learn the basics of data frame APIs and common usage patterns through hands-on exercises.

Data Frame Operations

  • create a data frame programmatically or load from a csv file
  • add a column to a data frame, columns can be
    • stored or computed
    • of type: string, long, int, double, float, date, date/time
  • drop one or more columns
  • select a subset of rows based on a criteria
  • sort by one or more columns or by an expression
  • select distinct rows based on all column values or a subset of columns
  • union - concatenating data frames with the same schemas
  • join with another data frame, based on the specified column values, inner and outer joins are supported
  • join with complements, a single operation that returns three data frames - a complement of this data frame in another one, an inner join of the data frames, and a complement of the other data frame in this one
  • lookup join - enrich a data frame by adding one or more columns based on value lookup in another data frame
  • pivot - similar to pivot in a spreadsheet where the distinct values in a column become columns in the pivot table and the row values in the table are grouped and aggregated based on the aggregation functions provided
  • find relative complements (set differences) of two data frames based on the specified column values
  • aggregation - aggregating the entire data frame or grouping by the specified column values and aggregating within a group
  • flag rows - individually or matching a criteria
    ...and more!

Examples

Creating a Data Frame

A data frame can be loaded from a CSV file. Let's say there is a file called "donut_orders.csv" with the following contents:

Customer,  Count,  Price,  Date
"Archibald", 5.0, 23.45, 2020-10-15
"Bridget", 10.0, 40.34, 2020-11-10
"Clyde", 4.0, 19.5, 2020-10-19

Then a data frame can be loaded from this file as shown below. The file schema can be inferred, like in this example, or specified explicitly.

DataFrame ordersFromFile  = new CsvDataSet("donut_orders.csv", "Donut Orders").loadAsDataFrame();

ordersFromFile

Customer Count Price Date
"Archibald" 5.0000 23.4500 2020-10-15
"Bridget" 10.0000 40.3400 2020-11-10
"Clyde" 4.0000 19.5000 2020-10-19

The loadAsDataFrame() method can take a numeric parameter, which specifies how many rows of data to load. For example:

DataFrame firstTwoOrders = new CsvDataSet("donut_orders.csv", "Donut Orders").loadAsDataFrame(2);

firstTwoOrders

Customer Count Price Date
"Archibald" 5.0000 23.4500 2020-10-15
"Bridget" 10.0000 40.3400 2020-11-10

CsvDataSet can also accept a schema object, which explicitly defines column types and also supports a number of options such as the value separator and the null marker in a source file. For example, let's consider a file "donut_orders_complicated.csv" that looks like

Customer|Count|Price|Date
"Archibald"|5|23.45|2020-10-15
"Bridget"|10|*null*|2020-11-10
"Clyde"|4|19.5|*null*

A data frame can be loaded from this file by providing a schema

CsvSchema donutSchema = new CsvSchema()
        .separator('|')
        .nullMarker("*null*");
donutSchema.addColumn("Customer", STRING);
donutSchema.addColumn("Count", LONG);
donutSchema.addColumn("Price", DOUBLE);
donutSchema.addColumn("Date", DATE);

CsvDataSet dataSet = new CsvDataSet("donut_orders_complicated.csv", "Donut Orders", donutSchema);
DataFrame schemingDonuts = dataSet.loadAsDataFrame();

schemingDonuts

Customer Count Price Date
"Archibald" 5 23.4500 2020-10-15
"Bridget" 10 null 2020-11-10
"Clyde" 4 19.5000 null

A data frame can be created programmatically by providing values for individual rows or columns. Here is a sample constructing a data frame row by row:

DataFrame orders = new DataFrame("Donut Orders")
    .addStringColumn("Customer").addLongColumn("Count").addDoubleColumn("Price").addDateColumn("Date")
    .addRow("Alice",  5, 23.45, LocalDate.of(2020, 10, 15))
    .addRow("Bob",   10, 40.34, LocalDate.of(2020, 11, 10))
    .addRow("Alice",  4, 19.50, LocalDate.of(2020, 10, 19))
    .addRow("Carl",  11, 44.78, LocalDate.of(2020, 12, 25))
    .addRow("Doris",  1,  5.00, LocalDate.of(2020,  9,  1));

orders

Customer Count Price Date
"Alice" 5 23.4500 2020-10-15
"Bob" 10 40.3400 2020-11-10
"Alice" 4 19.5000 2020-10-19
"Carl" 11 44.7800 2020-12-25
"Doris" 1 5.0000 2020-09-01

This way of creating a data frame is more useful for contexts like unit tests, where readability matters. In your applications you probably want to load a data frame from a file or populate individual columns with strongly typed values as in the following example, which produces a data frame with the same exact contents as the one in the example above:

DataFrame ordersByCol = new DataFrame("Donut Orders")
        .addStringColumn("Customer", Lists.immutable.of("Alice", "Bob", "Alice", "Carl", "Doris"))
        .addLongColumn("Count", LongLists.immutable.of(5, 10, 4, 11, 1))
        .addDoubleColumn("Price", DoubleLists.immutable.of(23.45, 40.34, 19.50, 44.78, 5.00))
        .addDateColumn("Date", Lists.immutable.of(LocalDate.of(2020, 10, 15), LocalDate.of(2020, 11, 10),
                LocalDate.of(2020, 10, 19), LocalDate.of(2020, 12, 25), LocalDate.of(2020, 9, 1)));
ordersByCol.seal(); // finished constructing a data frame

ordersByCol

Customer Count Price Date
"Alice" 5 23.4500 2020-10-15
"Bob" 10 40.3400 2020-11-10
"Alice" 4 19.5000 2020-10-19
"Carl" 11 44.7800 2020-12-25
"Doris" 1 5.0000 2020-09-01

A data frame can also be created from a hierarchical data set via a projection operator supported by the DSL. Let's say we have two record types: Person and Address. Then we can use the projection operator to turn a list of Person objects into a data frame as follows.

var visitor = new InMemoryEvaluationVisitor();
visitor.getContext().addDataSet(
        new ObjectListDataSet("Person", Lists.immutable.of(
            new Person("Alice", 30, new Address("Brooklyn", "North Dakota")),
            new Person("Bob", 40, new Address("Lexington", "Nebraska")),
            new Person("Carl", 50, new Address("Northwood", "Idaho"))
        )));

var script = ExpressionParserHelper.DEFAULT.toScript("""
        project {
            Name : Person.name,
            ${Lucky Number} : Person.luckyNumber,
            State : Person.address.state
        }
        """);

DataFrame projectionValue = ((DataFrameValue) script.evaluate(visitor)).dataFrameValue();

projectionValue

Name Lucky Number State
"Alice" 30 "North Dakota"
"Bob" 40 "Nebraska"
"Carl" 50 "Idaho"

Sum of Columns

DataFrame totalOrdered = orders.sum(Lists.immutable.of("Count", "Price"));

totalOrdered

Count Price
31 133.0700

Aggregation Functions

The following aggregation functions are supported

  • sum
  • min
  • max
  • avg - average, the return value is of the same type as the input data
  • avg2d - average, the return value is of type double for any primitive input type
  • count
  • same - the result is null if the aggregated values are not the equal to each other, otherwise it equals to that value
DataFrame orderStats = orders.aggregate(Lists.immutable.of(max("Price", "MaxPrice"), min("Price", "MinPrice"), sum("Price", "Total")));

orderStats

MaxPrice MinPrice Total
44.7800 5.0000 133.0700

Sum With Group By

DataFrame totalsByCustomer = orders.sumBy(Lists.immutable.of("Count", "Price"), Lists.immutable.of("Customer"));

totalsByCustomer

Customer Count Price
"Alice" 9 42.9500
"Bob" 10 40.3400
"Carl" 11 44.7800
"Doris" 1 5.0000

Add a Calculated Column

orders.addColumn("AvgDonutPrice", "Price / Count");

orders

Customer Count Price Date AvgDonutPrice
"Alice" 5 23.4500 2020-10-15 4.6900
"Bob" 10 40.3400 2020-11-10 4.0340
"Alice" 4 19.5000 2020-10-19 4.8750
"Carl" 11 44.7800 2020-12-25 4.0709
"Doris" 1 5.0000 2020-09-01 5.0000

Filter

Selection of a dataframe containing the rows matching the filter condition

DataFrame bigOrders = orders.selectBy("Count >= 10");

bigOrders

Customer Count Price Date AvgDonutPrice
"Bob" 10 40.3400 2020-11-10 4.0340
"Carl" 11 44.7800 2020-12-25 4.0709

Selection of a dataframe without the rows matching the filter condition

DataFrame smallOrders = orders.rejectBy("Count >= 10");

smallOrders

Customer Count Price Date AvgDonutPrice
"Alice" 5 23.4500 2020-10-15 4.6900
"Alice" 4 19.5000 2020-10-19 4.8750
"Doris" 1 5.0000 2020-09-01 5.0000

Split the rows of a data frame into two subsets both matching and not matching the filter condition respectively

Twin<DataFrame> highAndLow = orders.partition("Count >= 10");

Result - a pair of data frames:

highAndLow.getOne()

Customer Count Price Date AvgDonutPrice
"Bob" 10 40.3400 2020-11-10 4.0340
"Carl" 11 44.7800 2020-12-25 4.0709

highAndLow.getTwo()

Customer Count Price Date AvgDonutPrice
"Alice" 5 23.4500 2020-10-15 4.6900
"Alice" 4 19.5000 2020-10-19 4.8750
"Doris" 1 5.0000 2020-09-01 5.0000

Drop Column

orders.dropColumn("AvgDonutPrice");

orders

Customer Count Price Date
"Alice" 5 23.4500 2020-10-15
"Bob" 10 40.3400 2020-11-10
"Alice" 4 19.5000 2020-10-19
"Carl" 11 44.7800 2020-12-25
"Doris" 1 5.0000 2020-09-01

Sort

Sort by the order date:

orders.sortBy(Lists.immutable.of("Date"));

orders

Customer Count Price Date
"Doris" 1 5.0000 2020-09-01
"Alice" 5 23.4500 2020-10-15
"Alice" 4 19.5000 2020-10-19
"Bob" 10 40.3400 2020-11-10
"Carl" 11 44.7800 2020-12-25

Sort by Customer ignoring the first letter of their name

orders.sortByExpression("substr(Customer, 1)");

orders

Customer Count Price Date
"Carl" 11 44.7800 2020-12-25
"Alice" 5 23.4500 2020-10-15
"Alice" 4 19.5000 2020-10-19
"Bob" 10 40.3400 2020-11-10
"Doris" 1 5.0000 2020-09-01

Union

The union operation concatenates two data frames with the same schema. Note that it does not remove duplicate rows.

DataFrame otherOrders = new DataFrame("Other Donut Orders")
    .addStringColumn("Customer").addLongColumn("Count").addDoubleColumn("Price").addDateColumn("Date")
    .addRow("Eve",  2, 9.80, LocalDate.of(2020, 12, 5));

DataFrame combinedOrders = orders.union(otherOrders);

combinedOrders

Customer Count Price Date
"Alice" 5 23.4500 2020-10-15
"Bob" 10 40.3400 2020-11-10
"Alice" 4 19.5000 2020-10-19
"Carl" 11 44.7800 2020-12-25
"Doris" 1 5.0000 2020-09-01
"Eve" 2 9.8000 2020-12-05

Distinct

Say we want to get a list of all clients who placed orders, which are listed in the orders data frame above. We can use the distinct() method for that:

DataFrame distinctCustomers = orders.distinct(Lists.immutable.of("Customer"));

distinctCustomers

Customer
"Alice"
"Bob"
"Carl"
"Doris"

Join

DataFrame joining1 = new DataFrame("df1")
        .addStringColumn("Foo").addStringColumn("Bar").addStringColumn("Letter").addLongColumn("Baz")
        .addRow("Pinky", "pink", "B", 8)
        .addRow("Inky", "cyan", "C", 9)
        .addRow("Clyde", "orange", "D", 10);

DataFrame joining2 = new DataFrame("df2")
        .addStringColumn("Name").addStringColumn("Color").addStringColumn("Code").addLongColumn("Number")
        .addRow("Grapefruit", "pink", "B", 2)
        .addRow("Orange", "orange", "D", 4)
        .addRow("Apple", "red", "A", 1);

DataFrame joined = joining1.outerJoin(joining2, Lists.immutable.of("Bar", "Letter"), Lists.immutable.of("Color", "Code"));

joining1

Foo Bar Letter Baz
"Pinky" "pink" "B" 8
"Inky" "cyan" "C" 9
"Clyde" "orange" "D" 10

joining2

Name Color Code Number
"Grapefruit" "pink" "B" 2
"Orange" "orange" "D" 4
"Apple" "red" "A" 1

joined

Foo Bar Letter Baz Name Number
"Inky" "cyan" "C" 9 null null
"Clyde" "orange" "D" 10 "Orange" 4
"Pinky" "pink" "B" 8 "Grapefruit" 2
null "red" "A" null "Apple" 1

Join With Complements

DataFrame sideA = new DataFrame("Side A")
        .addStringColumn("Key").addLongColumn("Value")
        .addRow("A", 1)
        .addRow("B", 2)
        .addRow("X", 3)
        ;

DataFrame sideB = new DataFrame("Side B")
        .addStringColumn("Id").addLongColumn("Count")
        .addRow("X", 30)
        .addRow("B", 10)
        .addRow("C", 20)
        ;

Triplet<DataFrame> result = sideA.joinWithComplements(sideB, Lists.immutable.of("Key"), Lists.immutable.of("Id"));

sideA

Key Value
"A" 1
"B" 2
"X" 3

sideB

Id Count
"X" 30
"B" 10
"C" 20

Complement of B in A:

result.getOne()

Key Value
"A" 1

Intersection (inner join) of A and B based on the key columns:

result.getTwo()

Key Value Count
"B" 2 10
"X" 3 30

Complement of A in B:

result.getThree()

Id Count
"C" 20

Lookup Join

DataFrame pets = new DataFrame("Pets")
        .addStringColumn("Name").addLongColumn("Pet Kind Code")
        .addRow("Sweet Pea", 1)
        .addRow("Mittens",   2)
        .addRow("Spot",      1)
        .addRow("Eagly",     5)
        .addRow("Grzgxxch", 99);

DataFrame codes = new DataFrame("Pet Kinds")
        .addLongColumn("Code").addStringColumn("Description")
        .addRow(1, "Dog")
        .addRow(2, "Cat")
        .addRow(5, "Eagle")
        .addRow(7, "Snake");

pets.lookup(DfJoin.to(codes)
        .match("Pet Kind Code", "Code")
        .select("Description")
        .ifAbsent("Unclear"));

pets

Name Pet Kind Code Description
"Sweet Pea" 1 "Dog"
"Mittens" 2 "Cat"
"Spot" 1 "Dog"
"Eagly" 5 "Eagle"
"Grzgxxch" 99 "Unclear"

There is another option to do lookup using a more fluent API directly on the DataFrame class:

pets.lookupIn(codes)
    .match("Pet Kind Code", "Code")
    .select("Description")
    .ifAbsent("Unclear")
    .resolveLookup();

Note that if using this approach, once the all the lookup parameters are specified you need to call the resolveLookup() methof to actually execute the lookup.

Pivot

Say we have a data frame of individual donut sales like this:

  DataFrame donutSales = new DataFrame("Donut Shop Purchases")
          .addStringColumn("Customer").addStringColumn("Month").addStringColumn("Donut Type")
          .addLongColumn("Qty").addDoubleColumn("Amount")
          .addRow("Alice", "Jan", "Blueberry", 10, 10.00)
          .addRow("Alice", "Feb", "Glazed", 10, 12.00)
          .addRow("Alice", "Feb", "Old Fashioned", 10, 8.00)
          .addRow("Alice", "Jan", "Blueberry", 10, 10.00)
          .addRow("Bob", "Jan", "Blueberry", 5, 5.00)
          .addRow("Bob", "Jan", "Pumpkin Spice", 5, 10.00)
          .addRow("Bob", "Jan", "Apple Cider", 4, 4.40)
          .addRow("Bob", "Mar", "Apple Cider", 8, 8.80)
          .addRow("Dave", "Jan", "Blueberry", 10, 10.00)
          .addRow("Dave", "Jan", "Old Fashioned", 20, 16.00)
          .addRow("Carol", "Jan", "Blueberry", 6, 6.00)
          .addRow("Carol", "Feb", "Old Fashioned", 12, 9.60)
          .addRow("Carol", "Mar", "Jelly", 10, 15.00)
          .addRow("Carol", "Jan", "Apple Cider", 12, 13.20)
          ;

donutSales

Customer Month Donut Type Qty Amount
"Alice" "Jan" "Blueberry" 10 10.0000
"Alice" "Feb" "Glazed" 10 12.0000
"Alice" "Feb" "Old Fashioned" 10 8.0000
"Alice" "Jan" "Blueberry" 10 10.0000
"Bob" "Jan" "Blueberry" 5 5.0000
"Bob" "Jan" "Pumpkin Spice" 5 10.0000
"Bob" "Jan" "Apple Cider" 4 4.4000
"Bob" "Mar" "Apple Cider" 8 8.8000
"Dave" "Jan" "Blueberry" 10 10.0000
"Dave" "Jan" "Old Fashioned" 20 16.0000
"Carol" "Jan" "Blueberry" 6 6.0000
"Carol" "Feb" "Old Fashioned" 12 9.6000
"Carol" "Mar" "Jelly" 10 15.0000
"Carol" "Jan" "Apple Cider" 12 13.2000

Now we want to see total number of donuts purchased by each customer in each month. So the month when the sale happen becomes a column in the pivot table, the customer is the grouping criteria and the aggregate value is the number of donuts sold to this customer in this month.

DataFrame qtyByCustomerAndMonth = donutSales.pivot(
        Lists.immutable.of("Customer"),
        "Month",
        Lists.immutable.of(sum("Qty")));

qtyByCustomerAndMonth

Customer Jan Feb Mar
"Alice" 20 20 0
"Bob" 14 0 8
"Dave" 30 0 0
"Carol" 18 12 10

It is possible to aggregate more than one value in a pivot table, then the pivot table will contain as many columns per each pivot column value as there are aggregations (in this case for each month there will be two columns):

DataFrame qtyAndAmountByCustomerAndMonth = donutSales.pivot(
        Lists.immutable.of("Customer"),
        "Month",
        Lists.immutable.of(sum("Qty"), sum("Amount")));

qtyAndAmountByCustomerAndMonth

Customer Jan:Qty Jan:Amount Feb:Qty Feb:Amount Mar:Qty Mar:Amount
"Alice" 20 20.0000 20 20.0000 0 0.0000
"Bob" 14 19.4000 0 0.0000 8 8.8000
"Dave" 30 26.0000 0 0.0000 0 0.0000
"Carol" 18 19.2000 12 9.6000 10 15.0000

Domain Specific Language

The framework supports a simple Domain Specific Language (DSL) for computed column expression and operations on data frames such as filtering.

Script

A DSL script is a sequence of one or more statements (see below for the kinds of statements supported). The result of executing a script is the value of the last statement (or expression) that was executed in the script.

Value Types

The language supports variable and literal values of the following types:

  • string
  • long - integer values
  • double - floating point value
  • decimal - arbitrary precision (for all practical reasons) numbers
  • date
  • date-time
  • vector
  • boolean

There is no implicit type conversion of values and variables to avoid inadvertent errors, to minimize surprising results, and to fail early.

Literals

The following are examples of literals

Type Example
String "Hello" or 'Abracadabra' (both single and double quotes are supported)
Long 123
Double 123.456
Decimal There is no decimal literal per se, however there is a built-in function toDecimal() that lets specify decimal constants, e.g. toDecimal(1234, 3)
Date There is no date literal per se, however there is a built-in function toDate() that lets specify date constants, e.g. toDate(2021, 11, 25)
Vector (1, 2, 3)
('A', 'B', 'C')
(x, x + 1, x + 2)
Boolean there are no literal of boolean type as there was no scenario where they would be required, however boolean variables and expressions are fully supported

Variables

The variables in the DSL are immutable - once assigned, the value of the variable cannot change. This helps avoid errors arising from reusing variables.

A variable type is inferred at runtime and doesn't need to be declared.

Examples:

x = 123
123 in (x - 1, x, x + 1) ? 'in' : 'out'
a = "Hello, "
b = "there"
substr(a + b, 3)

Expressions

Category Expression Example
Unary -
not
-123
not (a > b)
Binary Arithmetic + - * / 1 + 2
unit_price * quantity
string concatenation:
"Hello, " + "world!"
Comparison > >= < <= == !=
Boolean and
or
xor
Containment in
not in
vectors:
"a" in ("a", "b", "c")
x not in (1, 2, 3)
strings:
'ello' in 'Hello!'
"bye" not in "Hello!"
Empty is empty
is not empty
"" is empty
'Hello' is not empty
vectors:
(1, 2, 3) is not empty
() is empty
Null check is null
is not null
"" is null
'Hello' is not null
x is null ? 0.0 : abs(x)

Statements

The following statements are available:

  • assignment
  • conditional
  • a free-standing expression

Functions

There are two types of functions - intrinsic (built-in) and explicitly declared using the DSL function declaration.

Recursion (direct or indirect) is not supported.

Built-in functions

Function Usage
abs abs(number)
contains contains(string, substring)
print print(value)
println println(value)
startsWith startsWith(string, prefix)
substr substr(string, beginIndex[, endIndex])
toDate toDate(string in the yyyy-mm-dd format)
toDate(yyyy, mm, dd)
toDateTime toDateTime(yyyy, mm, dd, hh, mm, ss)
toDouble toDouble(string)
toLong toLong(string)
toDecimal toUpper(unscaledValue, scale)
toString toString(number)
toUpper toUpper(string)
withinDays withinDays(date1, date2, numberOfDays)

User Declared Function Example 1

function abs(x)
{
  if x > 0 then
    x
  else
    -x
  endif
}
abs(-123)

User Declared Function Example 2

function hello()
{
  'Hello'
}

hello() + ' world!'

About

A tabular data structure (aka a data frame) based on the Eclipse Collections framework

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 99.7%
  • ANTLR 0.3%