forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnsPipe3.cpp
1884 lines (1565 loc) · 60.3 KB
/
nsPipe3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include "mozilla/Attributes.h"
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/ReentrantMonitor.h"
#include "nsIBufferedStreams.h"
#include "nsICloneableInputStream.h"
#include "nsIPipe.h"
#include "nsIEventTarget.h"
#include "nsITellableStream.h"
#include "mozilla/RefPtr.h"
#include "nsSegmentedBuffer.h"
#include "nsStreamUtils.h"
#include "nsString.h"
#include "nsCOMPtr.h"
#include "nsCRT.h"
#include "mozilla/Logging.h"
#include "nsIClassInfoImpl.h"
#include "nsAlgorithm.h"
#include "nsPipe.h"
#include "nsIAsyncInputStream.h"
#include "nsIAsyncOutputStream.h"
#include "nsIInputStreamPriority.h"
#include "nsThreadUtils.h"
using namespace mozilla;
#ifdef LOG
# undef LOG
#endif
//
// set MOZ_LOG=nsPipe:5
//
static LazyLogModule sPipeLog("nsPipe");
#define LOG(args) MOZ_LOG(sPipeLog, mozilla::LogLevel::Debug, args)
#define DEFAULT_SEGMENT_SIZE 4096
#define DEFAULT_SEGMENT_COUNT 16
class nsPipe;
class nsPipeEvents;
class nsPipeInputStream;
class nsPipeOutputStream;
class AutoReadSegment;
namespace {
enum MonitorAction { DoNotNotifyMonitor, NotifyMonitor };
enum SegmentChangeResult { SegmentNotChanged, SegmentAdvanceBufferRead };
} // namespace
//-----------------------------------------------------------------------------
class CallbackHolder {
public:
CallbackHolder() = default;
MOZ_IMPLICIT CallbackHolder(std::nullptr_t) {}
CallbackHolder(nsIAsyncInputStream* aStream,
nsIInputStreamCallback* aCallback, uint32_t aFlags,
nsIEventTarget* aEventTarget)
: mRunnable(aCallback ? NS_NewCancelableRunnableFunction(
"nsPipeInputStream AsyncWait Callback",
[stream = nsCOMPtr{aStream},
callback = nsCOMPtr{aCallback}]() {
callback->OnInputStreamReady(stream);
})
: nullptr),
mEventTarget(aEventTarget),
mFlags(aFlags) {}
CallbackHolder(nsIAsyncOutputStream* aStream,
nsIOutputStreamCallback* aCallback, uint32_t aFlags,
nsIEventTarget* aEventTarget)
: mRunnable(aCallback ? NS_NewCancelableRunnableFunction(
"nsPipeOutputStream AsyncWait Callback",
[stream = nsCOMPtr{aStream},
callback = nsCOMPtr{aCallback}]() {
callback->OnOutputStreamReady(stream);
})
: nullptr),
mEventTarget(aEventTarget),
mFlags(aFlags) {}
CallbackHolder(const CallbackHolder&) = delete;
CallbackHolder(CallbackHolder&&) = default;
CallbackHolder& operator=(const CallbackHolder&) = delete;
CallbackHolder& operator=(CallbackHolder&&) = default;
CallbackHolder& operator=(std::nullptr_t) {
mRunnable = nullptr;
mEventTarget = nullptr;
mFlags = 0;
return *this;
}
MOZ_IMPLICIT operator bool() const { return mRunnable; }
uint32_t Flags() const {
MOZ_ASSERT(mRunnable, "Should only be called when a callback is present");
return mFlags;
}
void Notify() {
nsCOMPtr<nsIRunnable> runnable = mRunnable.forget();
nsCOMPtr<nsIEventTarget> eventTarget = mEventTarget.forget();
if (runnable) {
if (eventTarget) {
eventTarget->Dispatch(runnable.forget());
} else {
runnable->Run();
}
}
}
private:
nsCOMPtr<nsIRunnable> mRunnable;
nsCOMPtr<nsIEventTarget> mEventTarget;
uint32_t mFlags = 0;
};
//-----------------------------------------------------------------------------
// this class is used to delay notifications until the end of a particular
// scope. it helps avoid the complexity of issuing callbacks while inside
// a critical section.
class nsPipeEvents {
public:
nsPipeEvents() = default;
~nsPipeEvents();
inline void NotifyReady(CallbackHolder aCallback) {
mCallbacks.AppendElement(std::move(aCallback));
}
private:
nsTArray<CallbackHolder> mCallbacks;
};
//-----------------------------------------------------------------------------
// This class is used to maintain input stream state. Its broken out from the
// nsPipeInputStream class because generally the nsPipe should be modifying
// this state and not the input stream itself.
struct nsPipeReadState {
nsPipeReadState()
: mReadCursor(nullptr),
mReadLimit(nullptr),
mSegment(0),
mAvailable(0),
mActiveRead(false),
mNeedDrain(false) {}
// All members of this type are guarded by the pipe monitor, however it cannot
// be named from this type, so the less-reliable MOZ_GUARDED_VAR is used
// instead. In the future it would be nice to avoid this, especially as
// MOZ_GUARDED_VAR is deprecated.
char* mReadCursor MOZ_GUARDED_VAR;
char* mReadLimit MOZ_GUARDED_VAR;
int32_t mSegment MOZ_GUARDED_VAR;
uint32_t mAvailable MOZ_GUARDED_VAR;
// This flag is managed using the AutoReadSegment RAII stack class.
bool mActiveRead MOZ_GUARDED_VAR;
// Set to indicate that the input stream has closed and should be drained,
// but that drain has been delayed due to an active read. When the read
// completes, this flag indicate the drain should then be performed.
bool mNeedDrain MOZ_GUARDED_VAR;
};
//-----------------------------------------------------------------------------
// an input end of a pipe (maintained as a list of refs within the pipe)
class nsPipeInputStream final : public nsIAsyncInputStream,
public nsITellableStream,
public nsISearchableInputStream,
public nsICloneableInputStream,
public nsIClassInfo,
public nsIBufferedInputStream,
public nsIInputStreamPriority {
public:
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSIINPUTSTREAM
NS_DECL_NSIASYNCINPUTSTREAM
NS_DECL_NSITELLABLESTREAM
NS_DECL_NSISEARCHABLEINPUTSTREAM
NS_DECL_NSICLONEABLEINPUTSTREAM
NS_DECL_NSICLASSINFO
NS_DECL_NSIBUFFEREDINPUTSTREAM
NS_DECL_NSIINPUTSTREAMPRIORITY
explicit nsPipeInputStream(nsPipe* aPipe)
: mPipe(aPipe),
mLogicalOffset(0),
mInputStatus(NS_OK),
mBlocking(true),
mBlocked(false),
mPriority(nsIRunnablePriority::PRIORITY_NORMAL) {}
nsPipeInputStream(const nsPipeInputStream& aOther)
: mPipe(aOther.mPipe),
mLogicalOffset(aOther.mLogicalOffset),
mInputStatus(aOther.mInputStatus),
mBlocking(aOther.mBlocking),
mBlocked(false),
mReadState(aOther.mReadState),
mPriority(nsIRunnablePriority::PRIORITY_NORMAL) {}
void SetNonBlocking(bool aNonBlocking) { mBlocking = !aNonBlocking; }
uint32_t Available() MOZ_REQUIRES(Monitor());
// synchronously wait for the pipe to become readable.
nsresult Wait();
// These two don't acquire the monitor themselves. Instead they
// expect their caller to have done so and to pass the monitor as
// evidence.
MonitorAction OnInputReadable(uint32_t aBytesWritten, nsPipeEvents&,
const ReentrantMonitorAutoEnter& ev)
MOZ_REQUIRES(Monitor());
MonitorAction OnInputException(nsresult, nsPipeEvents&,
const ReentrantMonitorAutoEnter& ev)
MOZ_REQUIRES(Monitor());
nsPipeReadState& ReadState() { return mReadState; }
const nsPipeReadState& ReadState() const { return mReadState; }
nsresult Status() const;
// A version of Status() that doesn't acquire the monitor.
nsresult Status(const ReentrantMonitorAutoEnter& ev) const
MOZ_REQUIRES(Monitor());
// The status of this input stream, ignoring the status of the underlying
// monitor. If this status is errored, the input stream has either already
// been removed from the pipe, or will be removed from the pipe shortly.
nsresult InputStatus(const ReentrantMonitorAutoEnter&) const
MOZ_REQUIRES(Monitor()) {
return mInputStatus;
}
ReentrantMonitor& Monitor() const;
private:
virtual ~nsPipeInputStream();
RefPtr<nsPipe> mPipe;
int64_t mLogicalOffset;
// Individual input streams can be closed without effecting the rest of the
// pipe. So track individual input stream status separately. |mInputStatus|
// is protected by |mPipe->mReentrantMonitor|.
nsresult mInputStatus MOZ_GUARDED_BY(Monitor());
bool mBlocking;
// these variables can only be accessed while inside the pipe's monitor
bool mBlocked MOZ_GUARDED_BY(Monitor());
CallbackHolder mCallback MOZ_GUARDED_BY(Monitor());
// requires pipe's monitor to access members; usually treat as an opaque token
// to pass to nsPipe
nsPipeReadState mReadState;
Atomic<uint32_t, Relaxed> mPriority;
};
//-----------------------------------------------------------------------------
// the output end of a pipe (allocated as a member of the pipe).
class nsPipeOutputStream : public nsIAsyncOutputStream, public nsIClassInfo {
public:
// since this class will be allocated as a member of the pipe, we do not
// need our own ref count. instead, we share the lifetime (the ref count)
// of the entire pipe. this macro is just convenience since it does not
// declare a mRefCount variable; however, don't let the name fool you...
// we are not inheriting from nsPipe ;-)
NS_DECL_ISUPPORTS_INHERITED
NS_DECL_NSIOUTPUTSTREAM
NS_DECL_NSIASYNCOUTPUTSTREAM
NS_DECL_NSICLASSINFO
explicit nsPipeOutputStream(nsPipe* aPipe)
: mPipe(aPipe),
mWriterRefCnt(0),
mLogicalOffset(0),
mBlocking(true),
mBlocked(false),
mWritable(true) {}
void SetNonBlocking(bool aNonBlocking) { mBlocking = !aNonBlocking; }
void SetWritable(bool aWritable) MOZ_REQUIRES(Monitor()) {
mWritable = aWritable;
}
// synchronously wait for the pipe to become writable.
nsresult Wait();
MonitorAction OnOutputWritable(nsPipeEvents&) MOZ_REQUIRES(Monitor());
MonitorAction OnOutputException(nsresult, nsPipeEvents&)
MOZ_REQUIRES(Monitor());
ReentrantMonitor& Monitor() const;
private:
nsPipe* mPipe;
// separate refcnt so that we know when to close the producer
ThreadSafeAutoRefCnt mWriterRefCnt;
int64_t mLogicalOffset;
bool mBlocking;
// these variables can only be accessed while inside the pipe's monitor
bool mBlocked MOZ_GUARDED_BY(Monitor());
bool mWritable MOZ_GUARDED_BY(Monitor());
CallbackHolder mCallback MOZ_GUARDED_BY(Monitor());
};
//-----------------------------------------------------------------------------
class nsPipe final {
public:
friend class nsPipeInputStream;
friend class nsPipeOutputStream;
friend class AutoReadSegment;
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(nsPipe)
// public constructor
friend void NS_NewPipe2(nsIAsyncInputStream**, nsIAsyncOutputStream**, bool,
bool, uint32_t, uint32_t);
private:
nsPipe(uint32_t aSegmentSize, uint32_t aSegmentCount);
~nsPipe();
//
// Methods below may only be called while inside the pipe's monitor. Some
// of these methods require passing a ReentrantMonitorAutoEnter to prove the
// monitor is held.
//
void PeekSegment(const nsPipeReadState& aReadState, uint32_t aIndex,
char*& aCursor, char*& aLimit)
MOZ_REQUIRES(mReentrantMonitor);
SegmentChangeResult AdvanceReadSegment(nsPipeReadState& aReadState,
const ReentrantMonitorAutoEnter& ev)
MOZ_REQUIRES(mReentrantMonitor);
bool ReadSegmentBeingWritten(nsPipeReadState& aReadState)
MOZ_REQUIRES(mReentrantMonitor);
uint32_t CountSegmentReferences(int32_t aSegment)
MOZ_REQUIRES(mReentrantMonitor);
void SetAllNullReadCursors() MOZ_REQUIRES(mReentrantMonitor);
bool AllReadCursorsMatchWriteCursor() MOZ_REQUIRES(mReentrantMonitor);
void RollBackAllReadCursors(char* aWriteCursor)
MOZ_REQUIRES(mReentrantMonitor);
void UpdateAllReadCursors(char* aWriteCursor) MOZ_REQUIRES(mReentrantMonitor);
void ValidateAllReadCursors() MOZ_REQUIRES(mReentrantMonitor);
uint32_t GetBufferSegmentCount(const nsPipeReadState& aReadState,
const ReentrantMonitorAutoEnter& ev) const
MOZ_REQUIRES(mReentrantMonitor);
bool IsAdvanceBufferFull(const ReentrantMonitorAutoEnter& ev) const
MOZ_REQUIRES(mReentrantMonitor);
//
// methods below may be called while outside the pipe's monitor
//
void DrainInputStream(nsPipeReadState& aReadState, nsPipeEvents& aEvents);
nsresult GetWriteSegment(char*& aSegment, uint32_t& aSegmentLen);
void AdvanceWriteCursor(uint32_t aCount);
void OnInputStreamException(nsPipeInputStream* aStream, nsresult aReason);
void OnPipeException(nsresult aReason, bool aOutputOnly = false);
nsresult CloneInputStream(nsPipeInputStream* aOriginal,
nsIInputStream** aCloneOut);
// methods below should only be called by AutoReadSegment
nsresult GetReadSegment(nsPipeReadState& aReadState, const char*& aSegment,
uint32_t& aLength);
void ReleaseReadSegment(nsPipeReadState& aReadState, nsPipeEvents& aEvents);
void AdvanceReadCursor(nsPipeReadState& aReadState, uint32_t aCount);
// We can't inherit from both nsIInputStream and nsIOutputStream
// because they collide on their Close method. Consequently we nest their
// implementations to avoid the extra object allocation.
nsPipeOutputStream mOutput;
// Since the input stream can be cloned, we may have more than one. Use
// a weak reference as the streams will clear their entry here in their
// destructor. Using a strong reference would create a reference cycle.
// Only usable while mReentrantMonitor is locked.
nsTArray<nsPipeInputStream*> mInputList MOZ_GUARDED_BY(mReentrantMonitor);
ReentrantMonitor mReentrantMonitor;
nsSegmentedBuffer mBuffer MOZ_GUARDED_BY(mReentrantMonitor);
// The maximum number of segments to allow to be buffered in advance
// of the fastest reader. This is collection of segments is called
// the "advance buffer".
uint32_t mMaxAdvanceBufferSegmentCount MOZ_GUARDED_BY(mReentrantMonitor);
int32_t mWriteSegment MOZ_GUARDED_BY(mReentrantMonitor);
char* mWriteCursor MOZ_GUARDED_BY(mReentrantMonitor);
char* mWriteLimit MOZ_GUARDED_BY(mReentrantMonitor);
// |mStatus| is protected by |mReentrantMonitor|.
nsresult mStatus MOZ_GUARDED_BY(mReentrantMonitor);
};
//-----------------------------------------------------------------------------
// Declarations of Monitor() methods on the streams.
//
// These must be placed early to provide MOZ_RETURN_CAPABILITY annotations for
// the thread-safety analysis. This couldn't be done at the declaration due to
// nsPipe not yet being defined.
ReentrantMonitor& nsPipeOutputStream::Monitor() const
MOZ_RETURN_CAPABILITY(mPipe->mReentrantMonitor) {
return mPipe->mReentrantMonitor;
}
ReentrantMonitor& nsPipeInputStream::Monitor() const
MOZ_RETURN_CAPABILITY(mPipe->mReentrantMonitor) {
return mPipe->mReentrantMonitor;
}
//-----------------------------------------------------------------------------
// RAII class representing an active read segment. When it goes out of scope
// it automatically updates the read cursor and releases the read segment.
class MOZ_STACK_CLASS AutoReadSegment final {
public:
AutoReadSegment(nsPipe* aPipe, nsPipeReadState& aReadState,
uint32_t aMaxLength)
: mPipe(aPipe),
mReadState(aReadState),
mStatus(NS_ERROR_FAILURE),
mSegment(nullptr),
mLength(0),
mOffset(0) {
MOZ_DIAGNOSTIC_ASSERT(mPipe);
MOZ_DIAGNOSTIC_ASSERT(!mReadState.mActiveRead);
mStatus = mPipe->GetReadSegment(mReadState, mSegment, mLength);
if (NS_SUCCEEDED(mStatus)) {
MOZ_DIAGNOSTIC_ASSERT(mReadState.mActiveRead);
MOZ_DIAGNOSTIC_ASSERT(mSegment);
mLength = std::min(mLength, aMaxLength);
MOZ_DIAGNOSTIC_ASSERT(mLength);
}
}
~AutoReadSegment() {
if (NS_SUCCEEDED(mStatus)) {
if (mOffset) {
mPipe->AdvanceReadCursor(mReadState, mOffset);
} else {
nsPipeEvents events;
mPipe->ReleaseReadSegment(mReadState, events);
}
}
MOZ_DIAGNOSTIC_ASSERT(!mReadState.mActiveRead);
}
nsresult Status() const { return mStatus; }
const char* Data() const {
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
MOZ_DIAGNOSTIC_ASSERT(mSegment);
return mSegment + mOffset;
}
uint32_t Length() const {
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
MOZ_DIAGNOSTIC_ASSERT(mLength >= mOffset);
return mLength - mOffset;
}
void Advance(uint32_t aCount) {
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(mStatus));
MOZ_DIAGNOSTIC_ASSERT(aCount <= (mLength - mOffset));
mOffset += aCount;
}
nsPipeReadState& ReadState() const { return mReadState; }
private:
// guaranteed to remain alive due to limited stack lifetime of AutoReadSegment
nsPipe* mPipe;
nsPipeReadState& mReadState;
nsresult mStatus;
const char* mSegment;
uint32_t mLength;
uint32_t mOffset;
};
//
// NOTES on buffer architecture:
//
// +-----------------+ - - mBuffer.GetSegment(0)
// | |
// + - - - - - - - - + - - nsPipeReadState.mReadCursor
// |/////////////////|
// |/////////////////|
// |/////////////////|
// |/////////////////|
// +-----------------+ - - nsPipeReadState.mReadLimit
// |
// +-----------------+
// |/////////////////|
// |/////////////////|
// |/////////////////|
// |/////////////////|
// |/////////////////|
// |/////////////////|
// +-----------------+
// |
// +-----------------+ - - mBuffer.GetSegment(mWriteSegment)
// |/////////////////|
// |/////////////////|
// |/////////////////|
// + - - - - - - - - + - - mWriteCursor
// | |
// | |
// +-----------------+ - - mWriteLimit
//
// (shaded region contains data)
//
// NOTE: Each input stream produced by the nsPipe contains its own, separate
// nsPipeReadState. This means there are multiple mReadCursor and
// mReadLimit values in play. The pipe cannot discard old data until
// all mReadCursors have moved beyond that point in the stream.
//
// Likewise, each input stream reader will have it's own amount of
// buffered data. The pipe size threshold, however, is only applied
// to the input stream that is being read fastest. We call this
// the "advance buffer" in that its in advance of all readers. We
// allow slower input streams to buffer more data so that we don't
// stall processing of the faster input stream.
//
// NOTE: on some systems (notably OS/2), the heap allocator uses an arena for
// small allocations (e.g., 64 byte allocations). this means that buffers may
// be allocated back-to-back. in the diagram above, for example, mReadLimit
// would actually be pointing at the beginning of the next segment. when
// making changes to this file, please keep this fact in mind.
//
//-----------------------------------------------------------------------------
// nsPipe methods:
//-----------------------------------------------------------------------------
nsPipe::nsPipe(uint32_t aSegmentSize, uint32_t aSegmentCount)
: mOutput(this),
mReentrantMonitor("nsPipe.mReentrantMonitor"),
// protect against overflow
mMaxAdvanceBufferSegmentCount(
std::min(aSegmentCount, UINT32_MAX / aSegmentSize)),
mWriteSegment(-1),
mWriteCursor(nullptr),
mWriteLimit(nullptr),
mStatus(NS_OK) {
// The internal buffer is always "infinite" so that we can allow
// the size to expand when cloned streams are read at different
// rates. We enforce a limit on how much data can be buffered
// ahead of the fastest reader in GetWriteSegment().
MOZ_ALWAYS_SUCCEEDS(mBuffer.Init(aSegmentSize));
}
nsPipe::~nsPipe() = default;
void nsPipe::PeekSegment(const nsPipeReadState& aReadState, uint32_t aIndex,
char*& aCursor, char*& aLimit) {
if (aIndex == 0) {
MOZ_DIAGNOSTIC_ASSERT(!aReadState.mReadCursor || mBuffer.GetSegmentCount());
aCursor = aReadState.mReadCursor;
aLimit = aReadState.mReadLimit;
} else {
uint32_t absoluteIndex = aReadState.mSegment + aIndex;
uint32_t numSegments = mBuffer.GetSegmentCount();
if (absoluteIndex >= numSegments) {
aCursor = aLimit = nullptr;
} else {
aCursor = mBuffer.GetSegment(absoluteIndex);
if (mWriteSegment == (int32_t)absoluteIndex) {
aLimit = mWriteCursor;
} else {
aLimit = aCursor + mBuffer.GetSegmentSize();
}
}
}
}
nsresult nsPipe::GetReadSegment(nsPipeReadState& aReadState,
const char*& aSegment, uint32_t& aLength) {
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (aReadState.mReadCursor == aReadState.mReadLimit) {
return NS_FAILED(mStatus) ? mStatus : NS_BASE_STREAM_WOULD_BLOCK;
}
// The input stream locks the pipe while getting the buffer to read from,
// but then unlocks while actual data copying is taking place. In
// order to avoid deleting the buffer out from under this lockless read
// set a flag to indicate a read is active. This flag is only modified
// while the lock is held.
MOZ_DIAGNOSTIC_ASSERT(!aReadState.mActiveRead);
aReadState.mActiveRead = true;
aSegment = aReadState.mReadCursor;
aLength = aReadState.mReadLimit - aReadState.mReadCursor;
MOZ_DIAGNOSTIC_ASSERT(aLength <= aReadState.mAvailable);
return NS_OK;
}
void nsPipe::ReleaseReadSegment(nsPipeReadState& aReadState,
nsPipeEvents& aEvents) {
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
MOZ_DIAGNOSTIC_ASSERT(aReadState.mActiveRead);
aReadState.mActiveRead = false;
// When a read completes and releases the mActiveRead flag, we may have
// blocked a drain from completing. This occurs when the input stream is
// closed during the read. In these cases, we need to complete the drain as
// soon as the active read completes.
if (aReadState.mNeedDrain) {
aReadState.mNeedDrain = false;
DrainInputStream(aReadState, aEvents);
}
}
void nsPipe::AdvanceReadCursor(nsPipeReadState& aReadState,
uint32_t aBytesRead) {
MOZ_DIAGNOSTIC_ASSERT(aBytesRead > 0);
nsPipeEvents events;
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
LOG(("III advancing read cursor by %u\n", aBytesRead));
MOZ_DIAGNOSTIC_ASSERT(aBytesRead <= mBuffer.GetSegmentSize());
aReadState.mReadCursor += aBytesRead;
MOZ_DIAGNOSTIC_ASSERT(aReadState.mReadCursor <= aReadState.mReadLimit);
MOZ_DIAGNOSTIC_ASSERT(aReadState.mAvailable >= aBytesRead);
aReadState.mAvailable -= aBytesRead;
// Check to see if we're at the end of the available read data. If we
// are, and this segment is not still being written, then we can possibly
// free up the segment.
if (aReadState.mReadCursor == aReadState.mReadLimit &&
!ReadSegmentBeingWritten(aReadState)) {
// Advance the segment position. If we have read any segments from the
// advance buffer then we can potentially notify blocked writers.
mOutput.Monitor().AssertCurrentThreadIn();
if (AdvanceReadSegment(aReadState, mon) == SegmentAdvanceBufferRead &&
mOutput.OnOutputWritable(events) == NotifyMonitor) {
mon.NotifyAll();
}
}
ReleaseReadSegment(aReadState, events);
}
}
SegmentChangeResult nsPipe::AdvanceReadSegment(
nsPipeReadState& aReadState, const ReentrantMonitorAutoEnter& ev) {
// Calculate how many segments are buffered for this stream to start.
uint32_t startBufferSegments = GetBufferSegmentCount(aReadState, ev);
int32_t currentSegment = aReadState.mSegment;
// Move to the next segment to read
aReadState.mSegment += 1;
// If this was the last reference to the first segment, then remove it.
if (currentSegment == 0 && CountSegmentReferences(currentSegment) == 0) {
// shift write and read segment index (-1 indicates an empty buffer).
mWriteSegment -= 1;
// Directly modify the current read state. If the associated input
// stream is closed simultaneous with reading, then it may not be
// in the mInputList any more.
aReadState.mSegment -= 1;
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
// Skip the current read state structure since we modify it manually
// before entering this loop.
if (&mInputList[i]->ReadState() == &aReadState) {
continue;
}
mInputList[i]->ReadState().mSegment -= 1;
}
// done with this segment
mBuffer.DeleteFirstSegment();
LOG(("III deleting first segment\n"));
}
if (mWriteSegment < aReadState.mSegment) {
// read cursor has hit the end of written data, so reset it
MOZ_DIAGNOSTIC_ASSERT(mWriteSegment == (aReadState.mSegment - 1));
aReadState.mReadCursor = nullptr;
aReadState.mReadLimit = nullptr;
// also, the buffer is completely empty, so reset the write cursor
if (mWriteSegment == -1) {
mWriteCursor = nullptr;
mWriteLimit = nullptr;
}
} else {
// advance read cursor and limit to next buffer segment
aReadState.mReadCursor = mBuffer.GetSegment(aReadState.mSegment);
if (mWriteSegment == aReadState.mSegment) {
aReadState.mReadLimit = mWriteCursor;
} else {
aReadState.mReadLimit = aReadState.mReadCursor + mBuffer.GetSegmentSize();
}
}
// Calculate how many segments are buffered for the stream after
// reading.
uint32_t endBufferSegments = GetBufferSegmentCount(aReadState, ev);
// If the stream has read a segment out of the set of advanced buffer
// segments, then the writer may advance.
if (startBufferSegments >= mMaxAdvanceBufferSegmentCount &&
endBufferSegments < mMaxAdvanceBufferSegmentCount) {
return SegmentAdvanceBufferRead;
}
// Otherwise there are no significant changes to the segment structure.
return SegmentNotChanged;
}
void nsPipe::DrainInputStream(nsPipeReadState& aReadState,
nsPipeEvents& aEvents) {
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
// If a segment is actively being read in ReadSegments() for this input
// stream, then we cannot drain the stream. This can happen because
// ReadSegments() does not hold the lock while copying from the buffer.
// If we detect this condition, simply note that we need a drain once
// the read completes and return immediately.
if (aReadState.mActiveRead) {
MOZ_DIAGNOSTIC_ASSERT(!aReadState.mNeedDrain);
aReadState.mNeedDrain = true;
return;
}
while (mWriteSegment >= aReadState.mSegment) {
// If the last segment to free is still being written to, we're done
// draining. We can't free any more.
if (ReadSegmentBeingWritten(aReadState)) {
break;
}
// Don't bother checking if this results in an advance buffer segment
// read. Since we are draining the entire stream we will read an
// advance buffer segment no matter what.
AdvanceReadSegment(aReadState, mon);
}
// Force the stream into an empty state. Make sure mAvailable, mCursor, and
// mReadLimit are consistent with one another.
aReadState.mAvailable = 0;
aReadState.mReadCursor = nullptr;
aReadState.mReadLimit = nullptr;
// Remove the input stream from the pipe's list of streams. This will
// prevent the pipe from holding the stream alive or trying to update
// its read state any further.
DebugOnly<uint32_t> numRemoved = 0;
mInputList.RemoveElementsBy([&](nsPipeInputStream* aEntry) {
bool result = &aReadState == &aEntry->ReadState();
numRemoved += result ? 1 : 0;
return result;
});
MOZ_ASSERT(numRemoved == 1);
// If we have read any segments from the advance buffer then we can
// potentially notify blocked writers.
mOutput.Monitor().AssertCurrentThreadIn();
if (!IsAdvanceBufferFull(mon) &&
mOutput.OnOutputWritable(aEvents) == NotifyMonitor) {
mon.NotifyAll();
}
}
bool nsPipe::ReadSegmentBeingWritten(nsPipeReadState& aReadState) {
mReentrantMonitor.AssertCurrentThreadIn();
bool beingWritten =
mWriteSegment == aReadState.mSegment && mWriteLimit > mWriteCursor;
MOZ_DIAGNOSTIC_ASSERT(!beingWritten || aReadState.mReadLimit == mWriteCursor);
return beingWritten;
}
nsresult nsPipe::GetWriteSegment(char*& aSegment, uint32_t& aSegmentLen) {
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
if (NS_FAILED(mStatus)) {
return mStatus;
}
// write cursor and limit may both be null indicating an empty buffer.
if (mWriteCursor == mWriteLimit) {
// The pipe is full if we have hit our limit on advance data buffering.
// This means the fastest reader is still reading slower than data is
// being written into the pipe.
if (IsAdvanceBufferFull(mon)) {
return NS_BASE_STREAM_WOULD_BLOCK;
}
// The nsSegmentedBuffer is configured to be "infinite", so this
// should never return nullptr here.
char* seg = mBuffer.AppendNewSegment();
if (!seg) {
return NS_ERROR_OUT_OF_MEMORY;
}
LOG(("OOO appended new segment\n"));
mWriteCursor = seg;
mWriteLimit = mWriteCursor + mBuffer.GetSegmentSize();
++mWriteSegment;
}
// make sure read cursor is initialized
SetAllNullReadCursors();
// check to see if we can roll-back our read and write cursors to the
// beginning of the current/first segment. this is purely an optimization.
if (mWriteSegment == 0 && AllReadCursorsMatchWriteCursor()) {
char* head = mBuffer.GetSegment(0);
LOG(("OOO rolling back write cursor %" PRId64 " bytes\n",
static_cast<int64_t>(mWriteCursor - head)));
RollBackAllReadCursors(head);
mWriteCursor = head;
}
aSegment = mWriteCursor;
aSegmentLen = mWriteLimit - mWriteCursor;
return NS_OK;
}
void nsPipe::AdvanceWriteCursor(uint32_t aBytesWritten) {
MOZ_DIAGNOSTIC_ASSERT(aBytesWritten > 0);
nsPipeEvents events;
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
LOG(("OOO advancing write cursor by %u\n", aBytesWritten));
char* newWriteCursor = mWriteCursor + aBytesWritten;
MOZ_DIAGNOSTIC_ASSERT(newWriteCursor <= mWriteLimit);
// update read limit if reading in the same segment
UpdateAllReadCursors(newWriteCursor);
mWriteCursor = newWriteCursor;
ValidateAllReadCursors();
// update the writable flag on the output stream
if (mWriteCursor == mWriteLimit) {
mOutput.Monitor().AssertCurrentThreadIn();
mOutput.SetWritable(!IsAdvanceBufferFull(mon));
}
// notify input stream that pipe now contains additional data
bool needNotify = false;
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
mInputList[i]->Monitor().AssertCurrentThreadIn();
if (mInputList[i]->OnInputReadable(aBytesWritten, events, mon) ==
NotifyMonitor) {
needNotify = true;
}
}
if (needNotify) {
mon.NotifyAll();
}
}
}
void nsPipe::OnInputStreamException(nsPipeInputStream* aStream,
nsresult aReason) {
MOZ_DIAGNOSTIC_ASSERT(NS_FAILED(aReason));
nsPipeEvents events;
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
// Its possible to re-enter this method when we call OnPipeException() or
// OnInputExection() below. If there is a caller stuck in our synchronous
// Wait() method, then they will get woken up with a failure code which
// re-enters this method. Therefore, gracefully handle unknown streams
// here.
// If we only have one stream open and it is the given stream, then shut
// down the entire pipe.
if (mInputList.Length() == 1) {
if (mInputList[0] == aStream) {
OnPipeException(aReason);
}
return;
}
// Otherwise just close the particular stream that hit an exception.
for (uint32_t i = 0; i < mInputList.Length(); ++i) {
if (mInputList[i] != aStream) {
continue;
}
mInputList[i]->Monitor().AssertCurrentThreadIn();
MonitorAction action =
mInputList[i]->OnInputException(aReason, events, mon);
// Notify after element is removed in case we re-enter as a result.
if (action == NotifyMonitor) {
mon.NotifyAll();
}
return;
}
}
}
void nsPipe::OnPipeException(nsresult aReason, bool aOutputOnly) {
LOG(("PPP nsPipe::OnPipeException [reason=%" PRIx32 " output-only=%d]\n",
static_cast<uint32_t>(aReason), aOutputOnly));
nsPipeEvents events;
{
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
// if we've already hit an exception, then ignore this one.
if (NS_FAILED(mStatus)) {
return;
}
mStatus = aReason;
bool needNotify = false;
// OnInputException() can drain the stream and remove it from
// mInputList. So iterate over a temp list instead.
nsTArray<nsPipeInputStream*> list = mInputList.Clone();
for (uint32_t i = 0; i < list.Length(); ++i) {
// an output-only exception applies to the input end if the pipe has
// zero bytes available.
list[i]->Monitor().AssertCurrentThreadIn();
if (aOutputOnly && list[i]->Available()) {
continue;
}
if (list[i]->OnInputException(aReason, events, mon) == NotifyMonitor) {
needNotify = true;
}
}
mOutput.Monitor().AssertCurrentThreadIn();
if (mOutput.OnOutputException(aReason, events) == NotifyMonitor) {
needNotify = true;
}
// Notify after we have removed any input streams from mInputList
if (needNotify) {
mon.NotifyAll();
}
}
}
nsresult nsPipe::CloneInputStream(nsPipeInputStream* aOriginal,
nsIInputStream** aCloneOut) {
ReentrantMonitorAutoEnter mon(mReentrantMonitor);
RefPtr<nsPipeInputStream> ref = new nsPipeInputStream(*aOriginal);
// don't add clones of closed pipes to mInputList.
ref->Monitor().AssertCurrentThreadIn();
if (NS_SUCCEEDED(ref->InputStatus(mon))) {
mInputList.AppendElement(ref);
}
nsCOMPtr<nsIAsyncInputStream> upcast = std::move(ref);
upcast.forget(aCloneOut);
return NS_OK;
}
uint32_t nsPipe::CountSegmentReferences(int32_t aSegment) {