forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathComputedTimingFunction.cpp
208 lines (182 loc) · 6.65 KB
/
ComputedTimingFunction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ComputedTimingFunction.h"
#include "nsAlgorithm.h" // For clamped()
#include "nsStyleUtil.h"
namespace mozilla {
void
ComputedTimingFunction::Init(const nsTimingFunction &aFunction)
{
mType = aFunction.mType;
if (nsTimingFunction::IsSplineType(mType)) {
mTimingFunction.Init(aFunction.mFunc.mX1, aFunction.mFunc.mY1,
aFunction.mFunc.mX2, aFunction.mFunc.mY2);
} else {
mStepsOrFrames = aFunction.mStepsOrFrames;
}
}
static inline double
StepTiming(uint32_t aSteps,
double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag,
nsTimingFunction::Type aType)
{
MOZ_ASSERT(aType == nsTimingFunction::Type::StepStart ||
aType == nsTimingFunction::Type::StepEnd, "invalid type");
// Calculate current step using step-end behavior
int32_t step = floor(aPortion * aSteps);
// step-start is one step ahead
if (aType == nsTimingFunction::Type::StepStart) {
step++;
}
// If the "before flag" is set and we are at a transition point,
// drop back a step
if (aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set &&
fmod(aPortion * aSteps, 1) == 0) {
step--;
}
// Convert to a progress value
double result = double(step) / double(aSteps);
// We should not produce a result outside [0, 1] unless we have an
// input outside that range. This takes care of steps that would otherwise
// occur at boundaries.
if (result < 0.0 && aPortion >= 0.0) {
return 0.0;
}
if (result > 1.0 && aPortion <= 1.0) {
return 1.0;
}
return result;
}
static inline double
FramesTiming(uint32_t aFrames, double aPortion)
{
MOZ_ASSERT(aFrames > 1, "the number of frames must be greater than 1");
int32_t currentFrame = floor(aPortion * aFrames);
double result = double(currentFrame) / double(aFrames - 1);
// Don't overshoot the natural range of the animation (by producing an output
// progress greater than 1.0) when we are at the exact end of its interval
// (i.e. the input progress is 1.0).
if (result > 1.0 && aPortion <= 1.0) {
return 1.0;
}
return result;
}
double
ComputedTimingFunction::GetValue(
double aPortion,
ComputedTimingFunction::BeforeFlag aBeforeFlag) const
{
if (HasSpline()) {
// Check for a linear curve.
// (GetSplineValue(), below, also checks this but doesn't work when
// aPortion is outside the range [0.0, 1.0]).
if (mTimingFunction.X1() == mTimingFunction.Y1() &&
mTimingFunction.X2() == mTimingFunction.Y2()) {
return aPortion;
}
// Ensure that we return 0 or 1 on both edges.
if (aPortion == 0.0) {
return 0.0;
}
if (aPortion == 1.0) {
return 1.0;
}
// For negative values, try to extrapolate with tangent (p1 - p0) or,
// if p1 is coincident with p0, with (p2 - p0).
if (aPortion < 0.0) {
if (mTimingFunction.X1() > 0.0) {
return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
} else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 0.0;
}
// For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
// if p2 is coincident with p3, with (p1 - p3).
if (aPortion > 1.0) {
if (mTimingFunction.X2() < 1.0) {
return 1.0 + (aPortion - 1.0) *
(mTimingFunction.Y2() - 1) / (mTimingFunction.X2() - 1);
} else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
return 1.0 + (aPortion - 1.0) *
(mTimingFunction.Y1() - 1) / (mTimingFunction.X1() - 1);
}
// If we can't calculate a sensible tangent, don't extrapolate at all.
return 1.0;
}
return mTimingFunction.GetSplineValue(aPortion);
}
return mType == nsTimingFunction::Type::Frames
? FramesTiming(mStepsOrFrames, aPortion)
: StepTiming(mStepsOrFrames, aPortion, aBeforeFlag, mType);
}
int32_t
ComputedTimingFunction::Compare(const ComputedTimingFunction& aRhs) const
{
if (mType != aRhs.mType) {
return int32_t(mType) - int32_t(aRhs.mType);
}
if (mType == nsTimingFunction::Type::CubicBezier) {
int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
if (order != 0) {
return order;
}
} else if (mType == nsTimingFunction::Type::StepStart ||
mType == nsTimingFunction::Type::StepEnd ||
mType == nsTimingFunction::Type::Frames) {
if (mStepsOrFrames != aRhs.mStepsOrFrames) {
return int32_t(mStepsOrFrames) - int32_t(aRhs.mStepsOrFrames);
}
}
return 0;
}
void
ComputedTimingFunction::AppendToString(nsAString& aResult) const
{
switch (mType) {
case nsTimingFunction::Type::CubicBezier:
nsStyleUtil::AppendCubicBezierTimingFunction(mTimingFunction.X1(),
mTimingFunction.Y1(),
mTimingFunction.X2(),
mTimingFunction.Y2(),
aResult);
break;
case nsTimingFunction::Type::StepStart:
case nsTimingFunction::Type::StepEnd:
nsStyleUtil::AppendStepsTimingFunction(mType, mStepsOrFrames, aResult);
break;
case nsTimingFunction::Type::Frames:
nsStyleUtil::AppendFramesTimingFunction(mStepsOrFrames, aResult);
break;
default:
nsStyleUtil::AppendCubicBezierKeywordTimingFunction(mType, aResult);
break;
}
}
/* static */ int32_t
ComputedTimingFunction::Compare(const Maybe<ComputedTimingFunction>& aLhs,
const Maybe<ComputedTimingFunction>& aRhs)
{
// We can't use |operator<| for const Maybe<>& here because
// 'ease' is prior to 'linear' which is represented by Nothing().
// So we have to convert Nothing() as 'linear' and check it first.
nsTimingFunction::Type lhsType = aLhs.isNothing() ?
nsTimingFunction::Type::Linear : aLhs->GetType();
nsTimingFunction::Type rhsType = aRhs.isNothing() ?
nsTimingFunction::Type::Linear : aRhs->GetType();
if (lhsType != rhsType) {
return int32_t(lhsType) - int32_t(rhsType);
}
// Both of them are Nothing().
if (lhsType == nsTimingFunction::Type::Linear) {
return 0;
}
// Other types.
return aLhs->Compare(aRhs.value());
}
} // namespace mozilla