forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAudioSampleFormat.h
259 lines (225 loc) · 6.28 KB
/
AudioSampleFormat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_AUDIOSAMPLEFORMAT_H_
#define MOZILLA_AUDIOSAMPLEFORMAT_H_
#include "nsAlgorithm.h"
#include <algorithm>
namespace mozilla {
/**
* Audio formats supported in MediaStreams and media elements.
*
* Only one of these is supported by AudioStream, and that is determined
* at compile time (roughly, FLOAT32 on desktops, S16 on mobile). Media decoders
* produce that format only; queued AudioData always uses that format.
*/
enum AudioSampleFormat
{
// Native-endian signed 16-bit audio samples
AUDIO_FORMAT_S16,
// Signed 32-bit float samples
AUDIO_FORMAT_FLOAT32,
// Silence: format will be chosen later
AUDIO_FORMAT_SILENCE,
// The format used for output by AudioStream.
#ifdef MOZ_SAMPLE_TYPE_S16
AUDIO_OUTPUT_FORMAT = AUDIO_FORMAT_S16
#else
AUDIO_OUTPUT_FORMAT = AUDIO_FORMAT_FLOAT32
#endif
};
enum {
MAX_AUDIO_SAMPLE_SIZE = sizeof(float)
};
template <AudioSampleFormat Format> class AudioSampleTraits;
template <> class AudioSampleTraits<AUDIO_FORMAT_FLOAT32> {
public:
typedef float Type;
};
template <> class AudioSampleTraits<AUDIO_FORMAT_S16> {
public:
typedef int16_t Type;
};
typedef AudioSampleTraits<AUDIO_OUTPUT_FORMAT>::Type AudioDataValue;
template<typename T> class AudioSampleTypeToFormat;
template <> class AudioSampleTypeToFormat<float> {
public:
static const AudioSampleFormat Format = AUDIO_FORMAT_FLOAT32;
};
template <> class AudioSampleTypeToFormat<short> {
public:
static const AudioSampleFormat Format = AUDIO_FORMAT_S16;
};
// Single-sample conversion
/*
* Use "2^N" conversion since it's simple, fast, "bit transparent", used by
* many other libraries and apparently behaves reasonably.
* http://blog.bjornroche.com/2009/12/int-float-int-its-jungle-out-there.html
* http://blog.bjornroche.com/2009/12/linearity-and-dynamic-range-in-int.html
*/
inline float
AudioSampleToFloat(float aValue)
{
return aValue;
}
inline float
AudioSampleToFloat(int16_t aValue)
{
return aValue/32768.0f;
}
inline float
AudioSampleToFloat(int32_t aValue)
{
return aValue/(float)(1U<<31);
}
template <typename T> T FloatToAudioSample(float aValue);
template <> inline float
FloatToAudioSample<float>(float aValue)
{
return aValue;
}
template <> inline int16_t
FloatToAudioSample<int16_t>(float aValue)
{
float v = aValue*32768.0f;
float clamped = std::max(-32768.0f, std::min(32767.0f, v));
return int16_t(clamped);
}
template <typename T> T UInt8bitToAudioSample(uint8_t aValue);
template <> inline float
UInt8bitToAudioSample<float>(uint8_t aValue)
{
return aValue * (static_cast<float>(2) / UINT8_MAX) - static_cast<float>(1);
}
template <> inline int16_t
UInt8bitToAudioSample<int16_t>(uint8_t aValue)
{
return (int16_t(aValue) << 8) + aValue + INT16_MIN;
}
template <typename T> T IntegerToAudioSample(int16_t aValue);
template <> inline float
IntegerToAudioSample<float>(int16_t aValue)
{
return aValue / 32768.0f;
}
template <> inline int16_t
IntegerToAudioSample<int16_t>(int16_t aValue)
{
return aValue;
}
template <typename T> T Int24bitToAudioSample(int32_t aValue);
template <> inline float
Int24bitToAudioSample<float>(int32_t aValue)
{
return aValue / static_cast<float>(1 << 23);
}
template <> inline int16_t
Int24bitToAudioSample<int16_t>(int32_t aValue)
{
return aValue / 256;
}
template<typename SrcT, typename DstT>
inline void
ConvertAudioSample(SrcT aIn, DstT& aOut);
template<>
inline void
ConvertAudioSample(int16_t aIn, int16_t & aOut)
{
aOut = aIn;
}
template<>
inline void
ConvertAudioSample(int16_t aIn, float& aOut)
{
aOut = AudioSampleToFloat(aIn);
}
template<>
inline void
ConvertAudioSample(float aIn, float& aOut)
{
aOut = aIn;
}
template<>
inline void
ConvertAudioSample(float aIn, int16_t& aOut)
{
aOut = FloatToAudioSample<int16_t>(aIn);
}
// Sample buffer conversion
template <typename From, typename To> inline void
ConvertAudioSamples(const From* aFrom, To* aTo, int aCount)
{
for (int i = 0; i < aCount; ++i) {
aTo[i] = FloatToAudioSample<To>(AudioSampleToFloat(aFrom[i]));
}
}
inline void
ConvertAudioSamples(const int16_t* aFrom, int16_t* aTo, int aCount)
{
memcpy(aTo, aFrom, sizeof(*aTo)*aCount);
}
inline void
ConvertAudioSamples(const float* aFrom, float* aTo, int aCount)
{
memcpy(aTo, aFrom, sizeof(*aTo)*aCount);
}
// Sample buffer conversion with scale
template <typename From, typename To> inline void
ConvertAudioSamplesWithScale(const From* aFrom, To* aTo, int aCount, float aScale)
{
if (aScale == 1.0f) {
ConvertAudioSamples(aFrom, aTo, aCount);
return;
}
for (int i = 0; i < aCount; ++i) {
aTo[i] = FloatToAudioSample<To>(AudioSampleToFloat(aFrom[i])*aScale);
}
}
inline void
ConvertAudioSamplesWithScale(const int16_t* aFrom, int16_t* aTo, int aCount, float aScale)
{
if (aScale == 1.0f) {
ConvertAudioSamples(aFrom, aTo, aCount);
return;
}
if (0.0f <= aScale && aScale < 1.0f) {
int32_t scale = int32_t((1 << 16) * aScale);
for (int i = 0; i < aCount; ++i) {
aTo[i] = int16_t((int32_t(aFrom[i]) * scale) >> 16);
}
return;
}
for (int i = 0; i < aCount; ++i) {
aTo[i] = FloatToAudioSample<int16_t>(AudioSampleToFloat(aFrom[i])*aScale);
}
}
// In place audio sample scaling.
inline void
ScaleAudioSamples(float* aBuffer, int aCount, float aScale)
{
for (int32_t i = 0; i < aCount; ++i) {
aBuffer[i] *= aScale;
}
}
inline void
ScaleAudioSamples(short* aBuffer, int aCount, float aScale)
{
int32_t volume = int32_t((1 << 16) * aScale);
for (int32_t i = 0; i < aCount; ++i) {
aBuffer[i] = short((int32_t(aBuffer[i]) * volume) >> 16);
}
}
inline const void*
AddAudioSampleOffset(const void* aBase, AudioSampleFormat aFormat,
int32_t aOffset)
{
static_assert(AUDIO_FORMAT_S16 == 0, "Bad constant");
static_assert(AUDIO_FORMAT_FLOAT32 == 1, "Bad constant");
NS_ASSERTION(aFormat == AUDIO_FORMAT_S16 || aFormat == AUDIO_FORMAT_FLOAT32,
"Unknown format");
return static_cast<const uint8_t*>(aBase) + (aFormat + 1)*2*aOffset;
}
} // namespace mozilla
#endif /* MOZILLA_AUDIOSAMPLEFORMAT_H_ */