forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 1
/
BloomFilter.h
232 lines (203 loc) · 7.49 KB
/
BloomFilter.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* A counting Bloom filter implementation. This allows consumers to
* do fast probabilistic "is item X in set Y?" testing which will
* never answer "no" when the correct answer is "yes" (but might
* incorrectly answer "yes" when the correct answer is "no").
*/
#ifndef mozilla_BloomFilter_h_
#define mozilla_BloomFilter_h_
#include "mozilla/Likely.h"
#include "mozilla/StandardInteger.h"
#include "mozilla/Util.h"
#include <string.h>
namespace mozilla {
/*
* This class implements a counting Bloom filter as described at
* <http://en.wikipedia.org/wiki/Bloom_filter#Counting_filters>, with
* 8-bit counters. This allows quick probabilistic answers to the
* question "is object X in set Y?" where the contents of Y might not
* be time-invariant. The probabilistic nature of the test means that
* sometimes the answer will be "yes" when it should be "no". If the
* answer is "no", then X is guaranteed not to be in Y.
*
* The filter is parametrized on KeySize, which is the size of the key
* generated by each of hash functions used by the filter, in bits,
* and the type of object T being added and removed. T must implement
* a |uint32_t hash() const| method which returns a uint32_t hash key
* that will be used to generate the two separate hash functions for
* the Bloom filter. This hash key MUST be well-distributed for good
* results! KeySize is not allowed to be larger than 16.
*
* The filter uses exactly 2**KeySize bytes of memory. From now on we
* will refer to the memory used by the filter as M.
*
* The expected rate of incorrect "yes" answers depends on M and on
* the number N of objects in set Y. As long as N is small compared
* to M, the rate of such answers is expected to be approximately
* 4*(N/M)**2 for this filter. In practice, if Y has a few hundred
* elements then using a KeySize of 12 gives a reasonably low
* incorrect answer rate. A KeySize of 12 has the additional benefit
* of using exactly one page for the filter in typical hardware
* configurations.
*/
template<unsigned KeySize, class T>
class BloomFilter {
/*
* A counting Bloom filter with 8-bit counters. For now we assume
* that having two hash functions is enough, but we may revisit that
* decision later.
*
* The filter uses an array with 2**KeySize entries.
*
* Assuming a well-distributed hash function, a Bloom filter with
* array size M containing N elements and
* using k hash function has expected false positive rate exactly
*
* $ (1 - (1 - 1/M)^{kN})^k $
*
* because each array slot has a
*
* $ (1 - 1/M)^{kN} $
*
* chance of being 0, and the expected false positive rate is the
* probability that all of the k hash functions will hit a nonzero
* slot.
*
* For reasonable assumptions (M large, kN large, which should both
* hold if we're worried about false positives) about M and kN this
* becomes approximately
*
* $$ (1 - \exp(-kN/M))^k $$
*
* For our special case of k == 2, that's $(1 - \exp(-2N/M))^2$,
* or in other words
*
* $$ N/M = -0.5 * \ln(1 - \sqrt(r)) $$
*
* where r is the false positive rate. This can be used to compute
* the desired KeySize for a given load N and false positive rate r.
*
* If N/M is assumed small, then the false positive rate can
* further be approximated as 4*N^2/M^2. So increasing KeySize by
* 1, which doubles M, reduces the false positive rate by about a
* factor of 4, and a false positive rate of 1% corresponds to
* about M/N == 20.
*
* What this means in practice is that for a few hundred keys using a
* KeySize of 12 gives false positive rates on the order of 0.25-4%.
*
* Similarly, using a KeySize of 10 would lead to a 4% false
* positive rate for N == 100 and to quite bad false positive
* rates for larger N.
*/
public:
BloomFilter() {
MOZ_STATIC_ASSERT(KeySize <= keyShift, "KeySize too big");
// Should we have a custom operator new using calloc instead and
// require that we're allocated via the operator?
clear();
}
/*
* Clear the filter. This should be done before reusing it, because
* just removing all items doesn't clear counters that hit the upper
* bound.
*/
void clear();
/*
* Add an item to the filter.
*/
void add(const T* t);
/*
* Remove an item from the filter.
*/
void remove(const T* t);
/*
* Check whether the filter might contain an item. This can
* sometimes return true even if the item is not in the filter,
* but will never return false for items that are actually in the
* filter.
*/
bool mightContain(const T* t) const;
/*
* Methods for add/remove/contain when we already have a hash computed
*/
void add(uint32_t hash);
void remove(uint32_t hash);
bool mightContain(uint32_t hash) const;
private:
static const size_t arraySize = (1 << KeySize);
static const uint32_t keyMask = (1 << KeySize) - 1;
static const uint32_t keyShift = 16;
static uint32_t hash1(uint32_t hash) { return hash & keyMask; }
static uint32_t hash2(uint32_t hash) { return (hash >> keyShift) & keyMask; }
uint8_t& firstSlot(uint32_t hash) { return counters[hash1(hash)]; }
uint8_t& secondSlot(uint32_t hash) { return counters[hash2(hash)]; }
const uint8_t& firstSlot(uint32_t hash) const { return counters[hash1(hash)]; }
const uint8_t& secondSlot(uint32_t hash) const { return counters[hash2(hash)]; }
static bool full(const uint8_t& slot) { return slot == UINT8_MAX; }
uint8_t counters[arraySize];
};
template<unsigned KeySize, class T>
inline void
BloomFilter<KeySize, T>::clear()
{
memset(counters, 0, arraySize);
}
template<unsigned KeySize, class T>
inline void
BloomFilter<KeySize, T>::add(uint32_t hash)
{
uint8_t& slot1 = firstSlot(hash);
if (MOZ_LIKELY(!full(slot1)))
++slot1;
uint8_t& slot2 = secondSlot(hash);
if (MOZ_LIKELY(!full(slot2)))
++slot2;
}
template<unsigned KeySize, class T>
MOZ_ALWAYS_INLINE void
BloomFilter<KeySize, T>::add(const T* t)
{
uint32_t hash = t->hash();
return add(hash);
}
template<unsigned KeySize, class T>
inline void
BloomFilter<KeySize, T>::remove(uint32_t hash)
{
// If the slots are full, we don't know whether we bumped them to be
// there when we added or not, so just leave them full.
uint8_t& slot1 = firstSlot(hash);
if (MOZ_LIKELY(!full(slot1)))
--slot1;
uint8_t& slot2 = secondSlot(hash);
if (MOZ_LIKELY(!full(slot2)))
--slot2;
}
template<unsigned KeySize, class T>
MOZ_ALWAYS_INLINE void
BloomFilter<KeySize, T>::remove(const T* t)
{
uint32_t hash = t->hash();
remove(hash);
}
template<unsigned KeySize, class T>
MOZ_ALWAYS_INLINE bool
BloomFilter<KeySize, T>::mightContain(uint32_t hash) const
{
// Check that all the slots for this hash contain something
return firstSlot(hash) && secondSlot(hash);
}
template<unsigned KeySize, class T>
MOZ_ALWAYS_INLINE bool
BloomFilter<KeySize, T>::mightContain(const T* t) const
{
uint32_t hash = t->hash();
return mightContain(hash);
}
} // namespace mozilla
#endif /* mozilla_BloomFilter_h_ */