forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 1
/
SurfaceCache.cpp
1845 lines (1568 loc) · 64.6 KB
/
SurfaceCache.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* SurfaceCache is a service for caching temporary surfaces in imagelib.
*/
#include "SurfaceCache.h"
#include <algorithm>
#include <utility>
#include "ISurfaceProvider.h"
#include "Image.h"
#include "LookupResult.h"
#include "ShutdownTracker.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "imgFrame.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/Likely.h"
#include "mozilla/RefPtr.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/StaticPrefs_image.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/Tuple.h"
#include "nsExpirationTracker.h"
#include "nsHashKeys.h"
#include "nsIMemoryReporter.h"
#include "nsRefPtrHashtable.h"
#include "nsSize.h"
#include "nsTArray.h"
#include "prsystem.h"
using std::max;
using std::min;
namespace mozilla {
using namespace gfx;
namespace image {
MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf)
class CachedSurface;
class SurfaceCacheImpl;
///////////////////////////////////////////////////////////////////////////////
// Static Data
///////////////////////////////////////////////////////////////////////////////
// The single surface cache instance.
static StaticRefPtr<SurfaceCacheImpl> sInstance;
// The mutex protecting the surface cache.
static StaticMutex sInstanceMutex;
///////////////////////////////////////////////////////////////////////////////
// SurfaceCache Implementation
///////////////////////////////////////////////////////////////////////////////
/**
* Cost models the cost of storing a surface in the cache. Right now, this is
* simply an estimate of the size of the surface in bytes, but in the future it
* may be worth taking into account the cost of rematerializing the surface as
* well.
*/
typedef size_t Cost;
static Cost ComputeCost(const IntSize& aSize, uint32_t aBytesPerPixel) {
MOZ_ASSERT(aBytesPerPixel == 1 || aBytesPerPixel == 4);
return aSize.width * aSize.height * aBytesPerPixel;
}
/**
* Since we want to be able to make eviction decisions based on cost, we need to
* be able to look up the CachedSurface which has a certain cost as well as the
* cost associated with a certain CachedSurface. To make this possible, in data
* structures we actually store a CostEntry, which contains a weak pointer to
* its associated surface.
*
* To make usage of the weak pointer safe, SurfaceCacheImpl always calls
* StartTracking after a surface is stored in the cache and StopTracking before
* it is removed.
*/
class CostEntry {
public:
CostEntry(NotNull<CachedSurface*> aSurface, Cost aCost)
: mSurface(aSurface), mCost(aCost) {}
NotNull<CachedSurface*> Surface() const { return mSurface; }
Cost GetCost() const { return mCost; }
bool operator==(const CostEntry& aOther) const {
return mSurface == aOther.mSurface && mCost == aOther.mCost;
}
bool operator<(const CostEntry& aOther) const {
return mCost < aOther.mCost ||
(mCost == aOther.mCost && mSurface < aOther.mSurface);
}
private:
NotNull<CachedSurface*> mSurface;
Cost mCost;
};
/**
* A CachedSurface associates a surface with a key that uniquely identifies that
* surface.
*/
class CachedSurface {
~CachedSurface() {}
public:
MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface)
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface)
explicit CachedSurface(NotNull<ISurfaceProvider*> aProvider)
: mProvider(aProvider), mIsLocked(false) {}
DrawableSurface GetDrawableSurface() const {
if (MOZ_UNLIKELY(IsPlaceholder())) {
MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
return DrawableSurface();
}
return mProvider->Surface();
}
void SetLocked(bool aLocked) {
if (IsPlaceholder()) {
return; // Can't lock a placeholder.
}
// Update both our state and our provider's state. Some surface providers
// are permanently locked; maintaining our own locking state enables us to
// respect SetLocked() even when it's meaningless from the provider's
// perspective.
mIsLocked = aLocked;
mProvider->SetLocked(aLocked);
}
bool IsLocked() const {
return !IsPlaceholder() && mIsLocked && mProvider->IsLocked();
}
void SetCannotSubstitute() {
mProvider->Availability().SetCannotSubstitute();
}
bool CannotSubstitute() const {
return mProvider->Availability().CannotSubstitute();
}
bool IsPlaceholder() const {
return mProvider->Availability().IsPlaceholder();
}
bool IsDecoded() const { return !IsPlaceholder() && mProvider->IsFinished(); }
ImageKey GetImageKey() const { return mProvider->GetImageKey(); }
const SurfaceKey& GetSurfaceKey() const { return mProvider->GetSurfaceKey(); }
nsExpirationState* GetExpirationState() { return &mExpirationState; }
CostEntry GetCostEntry() {
return image::CostEntry(WrapNotNull(this), mProvider->LogicalSizeInBytes());
}
size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + aMallocSizeOf(mProvider.get());
}
// A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
struct MOZ_STACK_CLASS SurfaceMemoryReport {
SurfaceMemoryReport(nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf)
: mCounters(aCounters), mMallocSizeOf(aMallocSizeOf) {}
void Add(NotNull<CachedSurface*> aCachedSurface, bool aIsFactor2) {
if (aCachedSurface->IsPlaceholder()) {
return;
}
// Record the memory used by the ISurfaceProvider. This may not have a
// straightforward relationship to the size of the surface that
// DrawableRef() returns if the surface is generated dynamically. (i.e.,
// for surfaces with PlaybackType::eAnimated.)
aCachedSurface->mProvider->AddSizeOfExcludingThis(
mMallocSizeOf, [&](ISurfaceProvider::AddSizeOfCbData& aMetadata) {
SurfaceMemoryCounter counter(aCachedSurface->GetSurfaceKey(),
aCachedSurface->IsLocked(),
aCachedSurface->CannotSubstitute(),
aIsFactor2, aMetadata.mFinished);
counter.Values().SetDecodedHeap(aMetadata.mHeapBytes);
counter.Values().SetDecodedNonHeap(aMetadata.mNonHeapBytes);
counter.Values().SetDecodedUnknown(aMetadata.mUnknownBytes);
counter.Values().SetExternalHandles(aMetadata.mExternalHandles);
counter.Values().SetFrameIndex(aMetadata.mIndex);
counter.Values().SetExternalId(aMetadata.mExternalId);
counter.Values().SetSurfaceTypes(aMetadata.mTypes);
mCounters.AppendElement(counter);
});
}
private:
nsTArray<SurfaceMemoryCounter>& mCounters;
MallocSizeOf mMallocSizeOf;
};
private:
nsExpirationState mExpirationState;
NotNull<RefPtr<ISurfaceProvider>> mProvider;
bool mIsLocked;
};
static int64_t AreaOfIntSize(const IntSize& aSize) {
return static_cast<int64_t>(aSize.width) * static_cast<int64_t>(aSize.height);
}
/**
* An ImageSurfaceCache is a per-image surface cache. For correctness we must be
* able to remove all surfaces associated with an image when the image is
* destroyed or invalidated. Since this will happen frequently, it makes sense
* to make it cheap by storing the surfaces for each image separately.
*
* ImageSurfaceCache also keeps track of whether its associated image is locked
* or unlocked.
*
* The cache may also enter "factor of 2" mode which occurs when the number of
* surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
* pref plus the number of native sizes of the image. When in "factor of 2"
* mode, the cache will strongly favour sizes which are a factor of 2 of the
* largest native size. It accomplishes this by suggesting a factor of 2 size
* when lookups fail and substituting the nearest factor of 2 surface to the
* ideal size as the "best" available (as opposed to substitution but not
* found). This allows us to minimize memory consumption and CPU time spent
* decoding when a website requires many variants of the same surface.
*/
class ImageSurfaceCache {
~ImageSurfaceCache() {}
public:
explicit ImageSurfaceCache(const ImageKey aImageKey)
: mLocked(false),
mFactor2Mode(false),
mFactor2Pruned(false),
mIsVectorImage(aImageKey->GetType() == imgIContainer::TYPE_VECTOR) {}
MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache)
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache)
typedef nsRefPtrHashtable<nsGenericHashKey<SurfaceKey>, CachedSurface>
SurfaceTable;
bool IsEmpty() const { return mSurfaces.Count() == 0; }
size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t bytes = aMallocSizeOf(this) +
mSurfaces.ShallowSizeOfExcludingThis(aMallocSizeOf);
for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
bytes += iter.UserData()->ShallowSizeOfIncludingThis(aMallocSizeOf);
}
return bytes;
}
[[nodiscard]] bool Insert(NotNull<CachedSurface*> aSurface) {
MOZ_ASSERT(!mLocked || aSurface->IsPlaceholder() || aSurface->IsLocked(),
"Inserting an unlocked surface for a locked image");
return mSurfaces.Put(aSurface->GetSurfaceKey(),
RefPtr<CachedSurface>{aSurface}, fallible);
}
already_AddRefed<CachedSurface> Remove(NotNull<CachedSurface*> aSurface) {
MOZ_ASSERT(mSurfaces.GetWeak(aSurface->GetSurfaceKey()),
"Should not be removing a surface we don't have");
RefPtr<CachedSurface> surface;
mSurfaces.Remove(aSurface->GetSurfaceKey(), getter_AddRefs(surface));
AfterMaybeRemove();
return surface.forget();
}
already_AddRefed<CachedSurface> Lookup(const SurfaceKey& aSurfaceKey,
bool aForAccess) {
RefPtr<CachedSurface> surface;
mSurfaces.Get(aSurfaceKey, getter_AddRefs(surface));
if (aForAccess) {
if (surface) {
// We don't want to allow factor of 2 mode pruning to release surfaces
// for which the callers will accept no substitute.
surface->SetCannotSubstitute();
} else if (!mFactor2Mode) {
// If no exact match is found, and this is for use rather than internal
// accounting (i.e. insert and removal), we know this will trigger a
// decode. Make sure we switch now to factor of 2 mode if necessary.
MaybeSetFactor2Mode();
}
}
return surface.forget();
}
/**
* @returns A tuple containing the best matching CachedSurface if available,
* a MatchType describing how the CachedSurface was selected, and
* an IntSize which is the size the caller should choose to decode
* at should it attempt to do so.
*/
Tuple<already_AddRefed<CachedSurface>, MatchType, IntSize> LookupBestMatch(
const SurfaceKey& aIdealKey) {
// Try for an exact match first.
RefPtr<CachedSurface> exactMatch;
mSurfaces.Get(aIdealKey, getter_AddRefs(exactMatch));
if (exactMatch) {
if (exactMatch->IsDecoded()) {
return MakeTuple(exactMatch.forget(), MatchType::EXACT, IntSize());
}
} else if (!mFactor2Mode) {
// If no exact match is found, and we are not in factor of 2 mode, then
// we know that we will trigger a decode because at best we will provide
// a substitute. Make sure we switch now to factor of 2 mode if necessary.
MaybeSetFactor2Mode();
}
// Try for a best match second, if using compact.
IntSize suggestedSize = SuggestedSize(aIdealKey.Size());
if (suggestedSize != aIdealKey.Size()) {
if (!exactMatch) {
SurfaceKey compactKey = aIdealKey.CloneWithSize(suggestedSize);
mSurfaces.Get(compactKey, getter_AddRefs(exactMatch));
if (exactMatch && exactMatch->IsDecoded()) {
MOZ_ASSERT(suggestedSize != aIdealKey.Size());
return MakeTuple(exactMatch.forget(),
MatchType::SUBSTITUTE_BECAUSE_BEST, suggestedSize);
}
}
}
// There's no perfect match, so find the best match we can.
RefPtr<CachedSurface> bestMatch;
for (auto iter = ConstIter(); !iter.Done(); iter.Next()) {
NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
const SurfaceKey& currentKey = current->GetSurfaceKey();
// We never match a placeholder.
if (current->IsPlaceholder()) {
continue;
}
// Matching the playback type and SVG context is required.
if (currentKey.Playback() != aIdealKey.Playback() ||
currentKey.SVGContext() != aIdealKey.SVGContext()) {
continue;
}
// Matching the flags is required.
if (currentKey.Flags() != aIdealKey.Flags()) {
continue;
}
// Anything is better than nothing! (Within the constraints we just
// checked, of course.)
if (!bestMatch) {
bestMatch = current;
continue;
}
MOZ_ASSERT(bestMatch, "Should have a current best match");
// Always prefer completely decoded surfaces.
bool bestMatchIsDecoded = bestMatch->IsDecoded();
if (bestMatchIsDecoded && !current->IsDecoded()) {
continue;
}
if (!bestMatchIsDecoded && current->IsDecoded()) {
bestMatch = current;
continue;
}
SurfaceKey bestMatchKey = bestMatch->GetSurfaceKey();
if (CompareArea(aIdealKey.Size(), bestMatchKey.Size(),
currentKey.Size())) {
bestMatch = current;
}
}
MatchType matchType;
if (bestMatch) {
if (!exactMatch) {
// No exact match, neither ideal nor factor of 2.
MOZ_ASSERT(suggestedSize != bestMatch->GetSurfaceKey().Size(),
"No exact match despite the fact the sizes match!");
matchType = MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND;
} else if (exactMatch != bestMatch) {
// The exact match is still decoding, but we found a substitute.
matchType = MatchType::SUBSTITUTE_BECAUSE_PENDING;
} else if (aIdealKey.Size() != bestMatch->GetSurfaceKey().Size()) {
// The best factor of 2 match is still decoding, but the best we've got.
MOZ_ASSERT(suggestedSize != aIdealKey.Size());
MOZ_ASSERT(mFactor2Mode || mIsVectorImage);
matchType = MatchType::SUBSTITUTE_BECAUSE_BEST;
} else {
// The exact match is still decoding, but it's the best we've got.
matchType = MatchType::EXACT;
}
} else {
if (exactMatch) {
// We found an "exact match"; it must have been a placeholder.
MOZ_ASSERT(exactMatch->IsPlaceholder());
matchType = MatchType::PENDING;
} else {
// We couldn't find an exact match *or* a substitute.
matchType = MatchType::NOT_FOUND;
}
}
return MakeTuple(bestMatch.forget(), matchType, suggestedSize);
}
void MaybeSetFactor2Mode() {
MOZ_ASSERT(!mFactor2Mode);
// Typically an image cache will not have too many size-varying surfaces, so
// if we exceed the given threshold, we should consider using a subset.
int32_t thresholdSurfaces =
StaticPrefs::image_cache_factor2_threshold_surfaces();
if (thresholdSurfaces < 0 ||
mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
return;
}
// Determine how many native surfaces this image has. If it is zero, and it
// is a vector image, then we should impute a single native size. Otherwise,
// it may be zero because we don't know yet, or the image has an error, or
// it isn't supported.
auto first = ConstIter();
NotNull<CachedSurface*> current = WrapNotNull(first.UserData());
Image* image = static_cast<Image*>(current->GetImageKey());
size_t nativeSizes = image->GetNativeSizesLength();
if (mIsVectorImage) {
MOZ_ASSERT(nativeSizes == 0);
nativeSizes = 1;
} else if (nativeSizes == 0) {
return;
}
// Increase the threshold by the number of native sizes. This ensures that
// we do not prevent decoding of the image at all its native sizes. It does
// not guarantee we will provide a surface at that size however (i.e. many
// other sized surfaces are requested, in addition to the native sizes).
thresholdSurfaces += nativeSizes;
if (mSurfaces.Count() <= static_cast<uint32_t>(thresholdSurfaces)) {
return;
}
// Get our native size. While we know the image should be fully decoded,
// if it is an SVG, it is valid to have a zero size. We can't do compacting
// in that case because we need to know the width/height ratio to define a
// candidate set.
IntSize nativeSize;
if (NS_FAILED(image->GetWidth(&nativeSize.width)) ||
NS_FAILED(image->GetHeight(&nativeSize.height)) ||
nativeSize.IsEmpty()) {
return;
}
// We have a valid size, we can change modes.
mFactor2Mode = true;
}
template <typename Function>
void Prune(Function&& aRemoveCallback) {
if (!mFactor2Mode || mFactor2Pruned) {
return;
}
// Attempt to discard any surfaces which are not factor of 2 and the best
// factor of 2 match exists.
bool hasNotFactorSize = false;
for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
NotNull<CachedSurface*> current = WrapNotNull(iter.UserData());
const SurfaceKey& currentKey = current->GetSurfaceKey();
const IntSize& currentSize = currentKey.Size();
// First we check if someone requested this size and would not accept
// an alternatively sized surface.
if (current->CannotSubstitute()) {
continue;
}
// Next we find the best factor of 2 size for this surface. If this
// surface is a factor of 2 size, then we want to keep it.
IntSize bestSize = SuggestedSize(currentSize);
if (bestSize == currentSize) {
continue;
}
// Check the cache for a surface with the same parameters except for the
// size which uses the closest factor of 2 size.
SurfaceKey compactKey = currentKey.CloneWithSize(bestSize);
RefPtr<CachedSurface> compactMatch;
mSurfaces.Get(compactKey, getter_AddRefs(compactMatch));
if (compactMatch && compactMatch->IsDecoded()) {
aRemoveCallback(current);
iter.Remove();
} else {
hasNotFactorSize = true;
}
}
// We have no surfaces that are not factor of 2 sized, so we can stop
// pruning henceforth, because we avoid the insertion of new surfaces that
// don't match our sizing set (unless the caller won't accept a
// substitution.)
if (!hasNotFactorSize) {
mFactor2Pruned = true;
}
// We should never leave factor of 2 mode due to pruning in of itself, but
// if we discarded surfaces due to the volatile buffers getting released,
// it is possible.
AfterMaybeRemove();
}
IntSize SuggestedSize(const IntSize& aSize) const {
IntSize suggestedSize = SuggestedSizeInternal(aSize);
if (mIsVectorImage) {
suggestedSize = SurfaceCache::ClampVectorSize(suggestedSize);
}
return suggestedSize;
}
IntSize SuggestedSizeInternal(const IntSize& aSize) const {
// When not in factor of 2 mode, we can always decode at the given size.
if (!mFactor2Mode) {
return aSize;
}
// We cannot enter factor of 2 mode unless we have a minimum number of
// surfaces, and we should have left it if the cache was emptied.
if (MOZ_UNLIKELY(IsEmpty())) {
MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
return aSize;
}
// This bit of awkwardness gets the largest native size of the image.
auto iter = ConstIter();
NotNull<CachedSurface*> firstSurface = WrapNotNull(iter.UserData());
Image* image = static_cast<Image*>(firstSurface->GetImageKey());
IntSize factorSize;
if (NS_FAILED(image->GetWidth(&factorSize.width)) ||
NS_FAILED(image->GetHeight(&factorSize.height)) ||
factorSize.IsEmpty()) {
// We should not have entered factor of 2 mode without a valid size, and
// several successfully decoded surfaces. Note that valid vector images
// may have a default size of 0x0, and those are not yet supported.
MOZ_ASSERT_UNREACHABLE("Expected valid native size!");
return aSize;
}
if (image->GetOrientation().SwapsWidthAndHeight() &&
image->HandledOrientation()) {
std::swap(factorSize.width, factorSize.height);
}
if (mIsVectorImage) {
// Ensure the aspect ratio matches the native size before forcing the
// caller to accept a factor of 2 size. The difference between the aspect
// ratios is:
//
// delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
//
// delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
// - desiredWidth*nativeHeight
//
// Using the maximum accepted delta as a constant, we can avoid the
// floating point division and just compare after some integer ops.
int32_t delta =
factorSize.width * aSize.height - aSize.width * factorSize.height;
int32_t maxDelta = (factorSize.height * aSize.height) >> 4;
if (delta > maxDelta || delta < -maxDelta) {
return aSize;
}
// If the requested size is bigger than the native size, we actually need
// to grow the native size instead of shrinking it.
if (factorSize.width < aSize.width) {
do {
IntSize candidate(factorSize.width * 2, factorSize.height * 2);
if (!SurfaceCache::IsLegalSize(candidate)) {
break;
}
factorSize = candidate;
} while (factorSize.width < aSize.width);
return factorSize;
}
// Otherwise we can find the best fit as normal.
}
// Start with the native size as the best first guess.
IntSize bestSize = factorSize;
factorSize.width /= 2;
factorSize.height /= 2;
while (!factorSize.IsEmpty()) {
if (!CompareArea(aSize, bestSize, factorSize)) {
// This size is not better than the last. Since we proceed from largest
// to smallest, we know that the next size will not be better if the
// previous size was rejected. Break early.
break;
}
// The current factor of 2 size is better than the last selected size.
bestSize = factorSize;
factorSize.width /= 2;
factorSize.height /= 2;
}
return bestSize;
}
bool CompareArea(const IntSize& aIdealSize, const IntSize& aBestSize,
const IntSize& aSize) const {
// Compare sizes. We use an area-based heuristic here instead of computing a
// truly optimal answer, since it seems very unlikely to make a difference
// for realistic sizes.
int64_t idealArea = AreaOfIntSize(aIdealSize);
int64_t currentArea = AreaOfIntSize(aSize);
int64_t bestMatchArea = AreaOfIntSize(aBestSize);
// If the best match is smaller than the ideal size, prefer bigger sizes.
if (bestMatchArea < idealArea) {
if (currentArea > bestMatchArea) {
return true;
}
return false;
}
// Other, prefer sizes closer to the ideal size, but still not smaller.
if (idealArea <= currentArea && currentArea < bestMatchArea) {
return true;
}
// This surface isn't an improvement over the current best match.
return false;
}
template <typename Function>
void CollectSizeOfSurfaces(nsTArray<SurfaceMemoryCounter>& aCounters,
MallocSizeOf aMallocSizeOf,
Function&& aRemoveCallback) {
CachedSurface::SurfaceMemoryReport report(aCounters, aMallocSizeOf);
for (auto iter = mSurfaces.Iter(); !iter.Done(); iter.Next()) {
NotNull<CachedSurface*> surface = WrapNotNull(iter.UserData());
// We don't need the drawable surface for ourselves, but adding a surface
// to the report will trigger this indirectly. If the surface was
// discarded by the OS because it was in volatile memory, we should remove
// it from the cache immediately rather than include it in the report.
DrawableSurface drawableSurface;
if (!surface->IsPlaceholder()) {
drawableSurface = surface->GetDrawableSurface();
if (!drawableSurface) {
aRemoveCallback(surface);
iter.Remove();
continue;
}
}
const IntSize& size = surface->GetSurfaceKey().Size();
bool factor2Size = false;
if (mFactor2Mode) {
factor2Size = (size == SuggestedSize(size));
}
report.Add(surface, factor2Size);
}
AfterMaybeRemove();
}
SurfaceTable::Iterator ConstIter() const { return mSurfaces.ConstIter(); }
uint32_t Count() const { return mSurfaces.Count(); }
void SetLocked(bool aLocked) { mLocked = aLocked; }
bool IsLocked() const { return mLocked; }
private:
void AfterMaybeRemove() {
if (IsEmpty() && mFactor2Mode) {
// The last surface for this cache was removed. This can happen if the
// surface was stored in a volatile buffer and got purged, or the surface
// expired from the cache. If the cache itself lingers for some reason
// (e.g. in the process of performing a lookup, the cache itself is
// locked), then we need to reset the factor of 2 state because it
// requires at least one surface present to get the native size
// information from the image.
mFactor2Mode = mFactor2Pruned = false;
}
}
SurfaceTable mSurfaces;
bool mLocked;
// True in "factor of 2" mode.
bool mFactor2Mode;
// True if all non-factor of 2 surfaces have been removed from the cache. Note
// that this excludes unsubstitutable sizes.
bool mFactor2Pruned;
// True if the surfaces are produced from a vector image. If so, it must match
// the aspect ratio when using factor of 2 mode.
bool mIsVectorImage;
};
/**
* SurfaceCacheImpl is responsible for determining which surfaces will be cached
* and managing the surface cache data structures. Rather than interact with
* SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
* maintains high-level invariants and encapsulates the details of the surface
* cache's implementation.
*/
class SurfaceCacheImpl final : public nsIMemoryReporter {
public:
NS_DECL_ISUPPORTS
SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS,
uint32_t aSurfaceCacheDiscardFactor,
uint32_t aSurfaceCacheSize)
: mExpirationTracker(aSurfaceCacheExpirationTimeMS),
mMemoryPressureObserver(new MemoryPressureObserver),
mDiscardFactor(aSurfaceCacheDiscardFactor),
mMaxCost(aSurfaceCacheSize),
mAvailableCost(aSurfaceCacheSize),
mLockedCost(0),
mOverflowCount(0),
mAlreadyPresentCount(0),
mTableFailureCount(0),
mTrackingFailureCount(0) {
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
os->AddObserver(mMemoryPressureObserver, "memory-pressure", false);
}
}
private:
virtual ~SurfaceCacheImpl() {
nsCOMPtr<nsIObserverService> os = services::GetObserverService();
if (os) {
os->RemoveObserver(mMemoryPressureObserver, "memory-pressure");
}
UnregisterWeakMemoryReporter(this);
}
public:
void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
InsertOutcome Insert(NotNull<ISurfaceProvider*> aProvider, bool aSetAvailable,
const StaticMutexAutoLock& aAutoLock) {
// If this is a duplicate surface, refuse to replace the original.
// XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
// twice. We'll make this more efficient in bug 1185137.
LookupResult result =
Lookup(aProvider->GetImageKey(), aProvider->GetSurfaceKey(), aAutoLock,
/* aMarkUsed = */ false);
if (MOZ_UNLIKELY(result)) {
mAlreadyPresentCount++;
return InsertOutcome::FAILURE_ALREADY_PRESENT;
}
if (result.Type() == MatchType::PENDING) {
RemoveEntry(aProvider->GetImageKey(), aProvider->GetSurfaceKey(),
aAutoLock);
}
MOZ_ASSERT(result.Type() == MatchType::NOT_FOUND ||
result.Type() == MatchType::PENDING,
"A LookupResult with no surface should be NOT_FOUND or PENDING");
// If this is bigger than we can hold after discarding everything we can,
// refuse to cache it.
Cost cost = aProvider->LogicalSizeInBytes();
if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost))) {
mOverflowCount++;
return InsertOutcome::FAILURE;
}
// Remove elements in order of cost until we can fit this in the cache. Note
// that locked surfaces aren't in mCosts, so we never remove them here.
while (cost > mAvailableCost) {
MOZ_ASSERT(!mCosts.IsEmpty(),
"Removed everything and it still won't fit");
Remove(mCosts.LastElement().Surface(), /* aStopTracking */ true,
aAutoLock);
}
// Locate the appropriate per-image cache. If there's not an existing cache
// for this image, create it.
const ImageKey imageKey = aProvider->GetImageKey();
RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
if (!cache) {
cache = new ImageSurfaceCache(imageKey);
if (!mImageCaches.Put(aProvider->GetImageKey(), RefPtr{cache},
fallible)) {
mTableFailureCount++;
return InsertOutcome::FAILURE;
}
}
// If we were asked to mark the cache entry available, do so.
if (aSetAvailable) {
aProvider->Availability().SetAvailable();
}
auto surface = MakeNotNull<RefPtr<CachedSurface>>(aProvider);
// We require that locking succeed if the image is locked and we're not
// inserting a placeholder; the caller may need to know this to handle
// errors correctly.
bool mustLock = cache->IsLocked() && !surface->IsPlaceholder();
if (mustLock) {
surface->SetLocked(true);
if (!surface->IsLocked()) {
return InsertOutcome::FAILURE;
}
}
// Insert.
MOZ_ASSERT(cost <= mAvailableCost, "Inserting despite too large a cost");
if (!cache->Insert(surface)) {
mTableFailureCount++;
if (mustLock) {
surface->SetLocked(false);
}
return InsertOutcome::FAILURE;
}
if (MOZ_UNLIKELY(!StartTracking(surface, aAutoLock))) {
MOZ_ASSERT(!mustLock);
Remove(surface, /* aStopTracking */ false, aAutoLock);
return InsertOutcome::FAILURE;
}
return InsertOutcome::SUCCESS;
}
void Remove(NotNull<CachedSurface*> aSurface, bool aStopTracking,
const StaticMutexAutoLock& aAutoLock) {
ImageKey imageKey = aSurface->GetImageKey();
RefPtr<ImageSurfaceCache> cache = GetImageCache(imageKey);
MOZ_ASSERT(cache, "Shouldn't try to remove a surface with no image cache");
// If the surface was not a placeholder, tell its image that we discarded
// it.
if (!aSurface->IsPlaceholder()) {
static_cast<Image*>(imageKey)->OnSurfaceDiscarded(
aSurface->GetSurfaceKey());
}
// If we failed during StartTracking, we can skip this step.
if (aStopTracking) {
StopTracking(aSurface, /* aIsTracked */ true, aAutoLock);
}
// Individual surfaces must be freed outside the lock.
mCachedSurfacesDiscard.AppendElement(cache->Remove(aSurface));
MaybeRemoveEmptyCache(imageKey, cache);
}
bool StartTracking(NotNull<CachedSurface*> aSurface,
const StaticMutexAutoLock& aAutoLock) {
CostEntry costEntry = aSurface->GetCostEntry();
MOZ_ASSERT(costEntry.GetCost() <= mAvailableCost,
"Cost too large and the caller didn't catch it");
if (aSurface->IsLocked()) {
mLockedCost += costEntry.GetCost();
MOZ_ASSERT(mLockedCost <= mMaxCost, "Locked more than we can hold?");
} else {
if (NS_WARN_IF(!mCosts.InsertElementSorted(costEntry, fallible))) {
mTrackingFailureCount++;
return false;
}
// This may fail during XPCOM shutdown, so we need to ensure the object is
// tracked before calling RemoveObject in StopTracking.
nsresult rv = mExpirationTracker.AddObjectLocked(aSurface, aAutoLock);
if (NS_WARN_IF(NS_FAILED(rv))) {
DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
mTrackingFailureCount++;
return false;
}
}
mAvailableCost -= costEntry.GetCost();
return true;
}
void StopTracking(NotNull<CachedSurface*> aSurface, bool aIsTracked,
const StaticMutexAutoLock& aAutoLock) {
CostEntry costEntry = aSurface->GetCostEntry();
if (aSurface->IsLocked()) {
MOZ_ASSERT(mLockedCost >= costEntry.GetCost(), "Costs don't balance");
mLockedCost -= costEntry.GetCost();
// XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
MOZ_ASSERT(!mCosts.Contains(costEntry),
"Shouldn't have a cost entry for a locked surface");
} else {
if (MOZ_LIKELY(aSurface->GetExpirationState()->IsTracked())) {
MOZ_ASSERT(aIsTracked, "Expiration-tracking a surface unexpectedly!");
mExpirationTracker.RemoveObjectLocked(aSurface, aAutoLock);
} else {
// Our call to AddObject must have failed in StartTracking; most likely
// we're in XPCOM shutdown right now.
MOZ_ASSERT(!aIsTracked, "Not expiration-tracking an unlocked surface!");
}
DebugOnly<bool> foundInCosts = mCosts.RemoveElementSorted(costEntry);
MOZ_ASSERT(foundInCosts, "Lost track of costs for this surface");
}
mAvailableCost += costEntry.GetCost();
MOZ_ASSERT(mAvailableCost <= mMaxCost,
"More available cost than we started with");
}
LookupResult Lookup(const ImageKey aImageKey, const SurfaceKey& aSurfaceKey,
const StaticMutexAutoLock& aAutoLock, bool aMarkUsed) {
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
// No cached surfaces for this image.
return LookupResult(MatchType::NOT_FOUND);
}
RefPtr<CachedSurface> surface = cache->Lookup(aSurfaceKey, aMarkUsed);
if (!surface) {
// Lookup in the per-image cache missed.
return LookupResult(MatchType::NOT_FOUND);
}
if (surface->IsPlaceholder()) {
return LookupResult(MatchType::PENDING);
}
DrawableSurface drawableSurface = surface->GetDrawableSurface();
if (!drawableSurface) {
// The surface was released by the operating system. Remove the cache
// entry as well.
Remove(WrapNotNull(surface), /* aStopTracking */ true, aAutoLock);
return LookupResult(MatchType::NOT_FOUND);
}
if (aMarkUsed &&
!MarkUsed(WrapNotNull(surface), WrapNotNull(cache), aAutoLock)) {
Remove(WrapNotNull(surface), /* aStopTracking */ false, aAutoLock);
return LookupResult(MatchType::NOT_FOUND);
}
MOZ_ASSERT(surface->GetSurfaceKey() == aSurfaceKey,
"Lookup() not returning an exact match?");
return LookupResult(std::move(drawableSurface), MatchType::EXACT);
}
LookupResult LookupBestMatch(const ImageKey aImageKey,
const SurfaceKey& aSurfaceKey,
const StaticMutexAutoLock& aAutoLock,
bool aMarkUsed) {
RefPtr<ImageSurfaceCache> cache = GetImageCache(aImageKey);
if (!cache) {
// No cached surfaces for this image.
return LookupResult(
MatchType::NOT_FOUND,
SurfaceCache::ClampSize(aImageKey, aSurfaceKey.Size()));
}
// Repeatedly look up the best match, trying again if the resulting surface
// has been freed by the operating system, until we can either lock a
// surface for drawing or there are no matching surfaces left.
// XXX(seth): This is O(N^2), but N is expected to be very small. If we
// encounter a performance problem here we can revisit this.
RefPtr<CachedSurface> surface;
DrawableSurface drawableSurface;
MatchType matchType = MatchType::NOT_FOUND;
IntSize suggestedSize;
while (true) {
Tie(surface, matchType, suggestedSize) =