-
Notifications
You must be signed in to change notification settings - Fork 12
/
minhash.py
60 lines (50 loc) · 1.62 KB
/
minhash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-
# 正则包
import re
# 自然语言处理包
import jieba
import jieba.analyse
# html 包
import html
# 数据集处理包
from datasketch import MinHash
class MinHashSimilarity(object):
"""
MinHash
"""
def __init__(self, content_x1, content_y2):
self.s1 = content_x1
self.s2 = content_y2
@staticmethod
def extract_keyword(content): # 提取关键词
# 正则过滤 html 标签
re_exp = re.compile(r'(<style>.*?</style>)|(<[^>]+>)', re.S)
content = re_exp.sub(' ', content)
# html 转义符实体化
content = html.unescape(content)
# 切割
seg = [i for i in jieba.cut(content, cut_all=True) if i != '']
# 提取关键词
keywords = jieba.analyse.extract_tags("|".join(seg), topK=200, withWeight=False)
return keywords
def main(self):
# 去除停用词
jieba.analyse.set_stop_words('./files/stopwords.txt')
# MinHash计算
m1, m2 = MinHash(), MinHash()
# 提取关键词
s1 = self.extract_keyword(self.s1)
s2 = self.extract_keyword(self.s2)
for data in s1:
m1.update(data.encode('utf8'))
for data in s2:
m2.update(data.encode('utf8'))
return m1.jaccard(m2)
# 测试
if __name__ == '__main__':
with open('./files/sample_x.txt', 'r') as x, open('./files/sample_y.txt', 'r') as y:
content_x = x.read()
content_y = y.read()
similarity = MinHashSimilarity(content_x, content_y)
similarity = similarity.main()
print('相似度: %.2f%%' % (similarity*100))