-
Notifications
You must be signed in to change notification settings - Fork 6
/
ecs_vrf.c
90 lines (72 loc) · 2.41 KB
/
ecs_vrf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
* ecs_vrf.c
*
* Created on: Nov 11, 2015
* Author: tslld
*/
#include "ecdsa.h"
#include "ec.h"
#include "ec_point.h"
#include "field_ops.h"
/** Verifies that the given signature is valid ECDSA signature
* of the supplied hash value using the specified public key.
* \param dgst pointer to the hash value
* \param dgstlen length of the hash value
* \param sig pointer to the ecdsa_sig structure
* \param eckey EC_KEY object containing a public EC key
* \return 1 if the signature is valid, 0 if the signature is invalid
* and -1 on error
*/
int ecdsa_verify(const char *dgst, int dgstlen, const ecdsa_sig sig, const ec_group group, ec_point pub_key) {
int ok = 0;
if (group == NULL || pub_key == NULL) {
fprintf(stdout, "ECDSA_F_ECDSA_DO_SIGN, ERR_R_PASSED_NULL_PARAMETER");
return -1;
}
mpz_t order, e; mpz_init(order);
ec_group_get_order(group, order);
//verify that r and s are integers within [1, n-1]
mpz_t one; mpz_init(one);
mpz_set_ui(one, 1);
if( mpz_cmp(sig->r,one) < 0 && mpz_cmp(order, sig->r) <= 0 &&
mpz_cmp(sig->s, one) < 0 && mpz_cmp(order,sig->s) <= 0) {
ok = 0;
goto err;
}
/* Convert bit string of hash digest to an integer e */
mpz_init_set_str(e, dgst, 16);
assert(mpz_sizeinbase(e, 2) <= mpz_sizeinbase(order, 2));
//Initialize variables
mpz_t w, u1, u2;
mpz_init(w); mpz_init(u1); mpz_init(u2);
/* Compute the inverse of s
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!mod_invert(w, sig->s, order)) {
fprintf(stdout, "ECDSA_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB");
ok = -1;
goto err;
}
//u1 = e * w mod order
mod_mul(u1, e, w, order);
//u2 = r * w mod n
mod_mul(u2, sig->r, w, order);
//x = u1*G + u2*Q
ec_point pt_tmp1 = ecp_mul_atomic(group->generator, u1, group);
ec_point pt_tmp2 = ecp_mul_atomic(pub_key, u2, group);
ec_point X = ec_point_add_atomic(pt_tmp1, pt_tmp2, group);
mpz_t x1; mpz_init(x1);
mpz_mod(x1, X->x, order);
//Get the result, by comparing x value with r and verifying that x is NOT at infinity
if ((mpz_cmp(sig->r, x1) == 0) && !X->infinity)
ok = 1;
else
ok = 0;
mpz_clear(w); mpz_clear(u1); mpz_clear(u2); mpz_clear(x1);
ec_point_free(X); ec_point_free(pt_tmp1); ec_point_free(pt_tmp2);
err:
mpz_clear(one); mpz_clear(order); mpz_clear(e);
ec_group_free(group); ec_point_free(pub_key);
return (ok);
}