-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhflw2ner2.py
357 lines (256 loc) · 10.2 KB
/
hflw2ner2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
'''
基于W2NER的命名实体识别统一框架
可以处理FLAT、NESTED两种
其实就是GlobalPointer模型
'''
from transformers import BertTokenizer, BertPreTrainedModel, BertModel
from transformers import get_scheduler
from torch.utils.data import Dataset, DataLoader, random_split
from torch.nn.utils import clip_grad_norm_
from torch.nn import Linear, Dropout
from torch.optim import AdamW
from tqdm import tqdm
import torch, os
import numpy as np
import json
checkpoint = "bert-base-chinese"
device = 'cuda'
mycheckpoint = "models/hflw2ner2"
if not os.path.exists(mycheckpoint):
os.makedirs(mycheckpoint)
tokenizer = BertTokenizer.from_pretrained(checkpoint)
label2id = {
'NONE': 0,
'TREATMENT': 1,
'BODY': 2,
'SIGNS': 3,
'CHECK': 4,
'DISEASE': 5
}
id2label = {v: k for k, v in label2id.items()}
class MyDataset(Dataset):
'''
从txt文件读取文本数据
'''
def __init__(self, originalnerfile):
self.nerdata = []
with open(originalnerfile, "r", encoding="utf-8") as f:
tdata = json.load(f)
for data in tdata:
lt = len(data["context"])
if lt <= 100 and lt >= 5:
self.nerdata.append(data)
def __len__(self):
return len(self.nerdata)
def __getitem__(self, idx):
data = self.nerdata[idx]
return data
def collate_fn(data):
'''
整理batch数据并编码
:param data: 输入batch文本数据
:return: 返回编码数据
'''
# print(data)
sents = [[j if j in tokenizer.vocab.keys() else "[UNK]" for j in i["context"]] for i in data]
spans = [i["span_posLabel"] for i in data]
ls = [len(i) for i in sents]
batch_size = len(ls)
sdata = tokenizer.batch_encode_plus(sents,
padding=True,
return_tensors="pt",
return_token_type_ids=False,
is_split_into_words=True)
lmax = np.max(ls)
ldata = torch.zeros(batch_size, lmax, lmax, dtype=torch.int)
for i, lb in enumerate(spans):
if len(lb) == 0:
continue
for k, v in lb.items():
startid, endid = k.split(";")
ldata[i, int(endid), int(startid)] = label2id[v]
return sdata.to(device), torch.tensor(ls, dtype=torch.int).to(device), ldata.to(device)
def sequence_mask(lengths, max_len=None):
lengths_shape = lengths.shape
lengths = lengths.reshape(-1)
batch_size = lengths.numel()
max_len = max_len or int(lengths.max())
lengths_shape += (max_len,)
return (torch.arange(0, max_len, device=lengths.device)
.type_as(lengths)
.unsqueeze(0).expand(batch_size, max_len)
.lt(lengths.unsqueeze(1))).reshape(lengths_shape)
def focal_loss(y_true, y_pred, gamma=2.0):
"""
Focal Loss 针对样本不均衡
:param y_true: 样本标签 B*N*N
:param y_pred: 预测值(softmax) B*N*N*n_class
:return: focal loss
"""
batch_size, seq_len, _, n_class = y_pred.shape
softmax = y_pred.reshape([-1])
labels = y_true.reshape([-1])
labels = torch.arange(0, batch_size * seq_len * seq_len).to(device) * n_class + labels
prob = torch.gather(softmax, 0, labels)
weight = torch.pow(1. - prob, gamma)
loss = -torch.multiply(weight, torch.log(prob))
loss = torch.reshape(loss, [batch_size, seq_len, seq_len])
return loss
class MYW2NER(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.dropout = Dropout(self.config.hidden_dropout_prob)
self.fc = Linear(self.config.hidden_size, self.config.num_labels)
self.init_weights()
def forward(self, bertinputs, seqlen, span=None):
out = self.bert(**bertinputs)
out = self.dropout(out.last_hidden_state)
out = out[:, 1:-1]
B = out.shape[0]
N = seqlen.max()
x1 = torch.tile(torch.unsqueeze(out, dim=2), [1, 1, N, 1])
x2 = x1.permute(0, 2, 1, 3)
xx = x1 * x2
logits = self.fc(xx)
predict = logits.argmax(dim=-1)
val = sequence_mask(seqlen, max_len=N)
# B*N*N
val1 = torch.tile(torch.unsqueeze(val, dim=1), [1, N, 1])
val2 = torch.tile(torch.unsqueeze(val, dim=2), [1, 1, N])
# B*N*N
val = torch.logical_and(val1, val2)
val3 = sequence_mask(torch.arange(1, N + 1).to(device))
val3 = torch.tile(torch.unsqueeze(val3, dim=0), [B, 1, 1])
val = torch.logical_and(val, val3)
predict *= val
if span is not None:
softmax = logits.softmax(dim=-1)
loss = focal_loss(span, softmax)
loss *= val
seqlen2sum = torch.sum(seqlen * (seqlen + 1) / 2)
loss = torch.sum(loss) / seqlen2sum
# 预测为实体,实际为该实体
tp = torch.sum(torch.logical_and(torch.gt(predict, 0), torch.eq(predict, span)))
# 预测为实体,实际为非实体或非该实体
fp = torch.sum(torch.logical_and(torch.gt(predict, 0), torch.logical_not(torch.eq(predict, span))))
# 预测非实体,实际为实体
fn = torch.sum(torch.logical_and(torch.eq(predict, 0), torch.gt(span, 0)))
return predict, loss, tp, fn, fp
else:
return predict
def train():
dataset = MyDataset("D:/pythonwork/W2NER/data/OriginalFiles/train_span.txt")
dataset_train, dataset_val = random_split(dataset, [0.9, 0.1])
dataloader_train = DataLoader(dataset_train,
batch_size=8,
shuffle=True,
collate_fn=collate_fn)
dataloader_val = DataLoader(dataset_val,
batch_size=8,
shuffle=False,
collate_fn=collate_fn)
model = MYW2NER.from_pretrained(checkpoint,
id2label=id2label,
label2id=label2id)
model.config.__dict__["val_f1"] = []
model.to(device)
model.save_pretrained(mycheckpoint)
tokenizer.save_pretrained(mycheckpoint)
paras_bert = []
paras_last = []
for k, v in dict(model.named_parameters()).items():
if k.startswith("bert"):
paras_bert += [{'params': [v]}]
else:
paras_last += [{'params': [v]}]
num_epochs = 10
lr = 1e-5
num_training_steps = num_epochs * len(dataloader_train)
optimizerbert = AdamW(paras_bert, lr=lr, eps=1.0e-6)
lr_schedulerbert = get_scheduler(
name="linear",
optimizer=optimizerbert,
num_training_steps=num_training_steps,
num_warmup_steps=len(dataloader_train),
)
optimizerlast = AdamW(paras_last, lr=100. * lr, eps=1.0e-6)
lr_schedulerlast = get_scheduler(
name="linear",
optimizer=optimizerlast,
num_training_steps=num_training_steps,
num_warmup_steps=len(dataloader_train),
)
for epoch in range(num_epochs):
total_loss = 0.
model.train()
for batch, (sen, ls, span) in enumerate(dataloader_train):
model.zero_grad()
_, loss, _, _, _ = model(sen, ls, span)
total_loss += loss.item()
loss.backward()
clip_grad_norm_(parameters=model.parameters(), max_norm=1.0, norm_type=2)
optimizerbert.step()
optimizerlast.step()
lr_schedulerbert.step()
lr_schedulerlast.step()
optimizerbert.zero_grad()
optimizerlast.zero_grad()
print("\repoch: %d %d|%d loss: %f " % (epoch + 1, batch, len(dataloader_train), loss.item()), end="")
avg_train_loss = total_loss / len(dataloader_train)
model.eval()
tp = 0
fn = 0
fp = 0
for sen, ls, span in tqdm(dataloader_val):
with torch.no_grad():
_, _, tpb, fnb, fpb = model(sen, ls, span)
tp += tpb.item()
fn += fnb.item()
fp += fpb.item()
precision = tp / (tp + fp + 1.0e-6)
recall = tp / (tp + fn + 1.0e-6)
f1 = 2 * precision * recall / (precision + recall)
print("\nepoch: ", epoch + 1,
" loss: ", avg_train_loss,
" eval_precision: ", precision,
" eval_recall: ", recall,
" eval_f1: ", f1,
)
model.config.__dict__["val_f1"].append(f1)
model.save_pretrained(mycheckpoint)
def inference(sentence):
tokenizer = BertTokenizer.from_pretrained(mycheckpoint)
sen = [word if word in tokenizer.vocab.keys() else '[UNK]' for word in sentence]
lsen = len(sen)
data = tokenizer.batch_encode_plus([sen],
is_split_into_words=True,
return_token_type_ids=False,
return_tensors="pt")
ls = torch.tensor([lsen])
data.to(device)
ls = ls.to(device)
model = MYW2NER.from_pretrained(mycheckpoint)
model.to(device)
model.eval()
predict = model(data, ls)[0]
print(sentence)
# for i in range(lsen):
# for j in range(i):
# if predict[i, j] > 0:
# print(''.join([sen[k] for k in range(j, i + 1)]), id2label[predict[i, j].item()])
labels = ["O"] * lsen
for i in range(lsen):
for j in range(i):
if predict[i, j] > 0:
res = id2label[predict[i, j].item()]
labels[j:i + 1] = [res + "-B"] + [res + "-I"] * (i - j)
for i in range(lsen):
print(sentence[i], '\t', labels[i])
print('\n------------------------------------------')
if __name__ == "__main__":
train()
# inference("患者精神状况好,无发热,诉右髋部疼痛,饮食差,二便正常。")
# inference("腹叩移动性浊音阴性,肠鸣音正常,未闻及高调肠鸣音及气过水声。")
# inference("我肚子有点疼痛。")
# inference("韩凤科 男 74岁 汉族 已婚 现住双塔山棋盘地村 主因发作性头痛头晕伴左侧肢体无力1天于2016-1-26 11:06入院。")