diff --git a/sparse-index.c b/sparse-index.c index 8577fa726b8001..9913a6078cd742 100644 --- a/sparse-index.c +++ b/sparse-index.c @@ -440,14 +440,21 @@ void ensure_correct_sparsity(struct index_state *istate) } struct path_found_data { + /** + * The path stored in 'dir', if non-empty, corresponds to the most- + * recent path that we checked where: + * + * 1. The path should be a directory, according to the index. + * 2. The path does not exist. + * 3. The parent path _does_ exist. (This may be the root of the + * working directory.) + */ struct strbuf dir; - int dir_found; size_t lstat_count; }; #define PATH_FOUND_DATA_INIT { \ - .dir = STRBUF_INIT, \ - .dir_found = 1 \ + .dir = STRBUF_INIT \ } static void clear_path_found_data(struct path_found_data *data) @@ -455,49 +462,108 @@ static void clear_path_found_data(struct path_found_data *data) strbuf_release(&data->dir); } +/** + * Return the length of the longest common substring that ends in a + * slash ('/') to indicate the longest common parent directory. Returns + * zero if no common directory exists. + */ +static size_t max_common_dir_prefix(const char *path1, const char *path2) +{ + size_t common_prefix = 0; + for (size_t i = 0; path1[i] && path2[i]; i++) { + if (path1[i] != path2[i]) + break; + + /* + * If they agree at a directory separator, then add one + * to make sure it is included in the common prefix string. + */ + if (path1[i] == '/') + common_prefix = i + 1; + } + + return common_prefix; +} + static int path_found(const char *path, struct path_found_data *data) { struct stat st; - char *newdir; + size_t common_prefix; /* - * If dirname corresponds to a directory that doesn't exist, and this - * path starts with dirname, then path can't exist. + * If data->dir is non-empty, then it contains a path that doesn't + * exist, including an ending slash ('/'). If it is a prefix of 'path', + * then we can return 0. */ - if (!data->dir_found && !memcmp(path, data->dir.buf, data->dir.len)) + if (data->dir.len && !memcmp(path, data->dir.buf, data->dir.len)) return 0; /* - * If path itself exists, return 1. + * Otherwise, we must check if the current path exists. If it does, then + * return 1. The cached directory will be skipped until we come across + * a missing path again. */ data->lstat_count++; if (!lstat(path, &st)) return 1; /* - * Otherwise, path does not exist so we'll return 0...but we'll first - * determine some info about its parent directory so we can avoid - * lstat calls for future cache entries. + * At this point, we know that 'path' doesn't exist, and we know that + * the parent directory of 'data->dir' does exist. Let's set 'data->dir' + * to be the top-most non-existing directory of 'path'. If the first + * parent of 'path' exists, then we will act as though 'path' + * corresponds to a directory (by adding a slash). */ - newdir = strrchr(path, '/'); - if (!newdir) - return 0; /* Didn't find a parent dir; just return 0 now. */ + common_prefix = max_common_dir_prefix(path, data->dir.buf); /* - * If path starts with directory (which we already lstat'ed and found), - * then no need to lstat parent directory again. + * At this point, 'path' and 'data->dir' have a common existing parent + * directory given by path[0..common_prefix] (which could have length 0). + * We "grow" the data->dir buffer by checking for existing directories + * along 'path'. */ - if (data->dir_found && data->dir.buf && - memcmp(path, data->dir.buf, data->dir.len)) - return 0; - /* Free previous dirname, and cache path's dirname */ - strbuf_reset(&data->dir); - strbuf_add(&data->dir, path, newdir - path + 1); + strbuf_setlen(&data->dir, common_prefix); + while (1) { + /* Find the next directory in 'path'. */ + const char *rest = path + data->dir.len; + const char *next_slash = strchr(rest, '/'); - data->lstat_count++; - data->dir_found = !lstat(data->dir.buf, &st); + /* + * If there are no more slashes, then 'path' doesn't contain a + * non-existent _parent_ directory. Set 'data->dir' to be equal + * to 'path' plus an additional slash, so it can be used for + * caching in the future. The filename of 'path' is considered + * a non-existent directory. + * + * Note: if "{path}/" exists as a directory, then it will never + * appear as a prefix of other callers to this method, assuming + * the context from the clear_skip_worktree... methods. If this + * method is reused, then this must be reconsidered. + */ + if (!next_slash) { + strbuf_addstr(&data->dir, rest); + strbuf_addch(&data->dir, '/'); + break; + } + /* + * Now that we have a slash, let's grow 'data->dir' to include + * this slash, then test if we should stop. + */ + strbuf_add(&data->dir, rest, next_slash - rest + 1); + + /* If the parent dir doesn't exist, then stop here. */ + data->lstat_count++; + if (lstat(data->dir.buf, &st)) + return 0; + } + + /* + * At this point, 'data->dir' is equal to 'path' plus a slash character, + * and the parent directory of 'path' definitely exists. Moreover, we + * know that 'path' doesn't exist, or we would have returned 1 earlier. + */ return 0; }