-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInvControl.py
2149 lines (1462 loc) · 111 KB
/
InvControl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2021-2024 Paulo Meira
# Copyright (c) 2021-2024 DSS-Extensions contributors
from __future__ import annotations
from typing import Union, List, AnyStr, Optional, Iterator, TYPE_CHECKING
from typing_extensions import TypedDict, Unpack
from .types import Float64Array, Int32Array
from . import enums
from .DSSObj import IDSSObj, DSSObj
from .Batch import DSSBatch
from .ArrayProxy import BatchFloat64ArrayProxy, BatchInt32ArrayProxy
from .common import LIST_LIKE
from .CircuitElement import CircuitElementBatchMixin, CircuitElementMixin
from .XYcurve import XYcurve
class InvControl(DSSObj, CircuitElementMixin):
__slots__ = DSSObj._extra_slots + CircuitElementMixin._extra_slots
_cls_name = 'InvControl'
_cls_idx = 42
_cls_int_idx = {
2,
3,
6,
7,
13,
17,
18,
22,
23,
25,
34,
36,
}
_cls_float_idx = {
5,
9,
10,
11,
12,
14,
15,
16,
19,
20,
21,
24,
33,
35,
}
_cls_prop_idx = {
'derlist': 1,
'mode': 2,
'combimode': 3,
'vvc_curve1': 4,
'hysteresis_offset': 5,
'voltage_curvex_ref': 6,
'avgwindowlen': 7,
'voltwatt_curve': 8,
'dbvmin': 9,
'dbvmax': 10,
'argralowv': 11,
'argrahiv': 12,
'dynreacavgwindowlen': 13,
'deltaq_factor': 14,
'voltagechangetolerance': 15,
'varchangetolerance': 16,
'voltwattyaxis': 17,
'rateofchangemode': 18,
'lpftau': 19,
'risefalllimit': 20,
'deltap_factor': 21,
'eventlog': 22,
'refreactivepower': 23,
'activepchangetolerance': 24,
'monvoltagecalc': 25,
'monbus': 26,
'monbusesvbase': 27,
'voltwattch_curve': 28,
'wattpf_curve': 29,
'wattvar_curve': 30,
'vv_refreactivepower': 31,
'pvsystemlist': 32,
'vsetpoint': 33,
'controlmodel': 34,
'basefreq': 35,
'enabled': 36,
'like': 37,
}
def __init__(self, api_util, ptr):
DSSObj.__init__(self, api_util, ptr)
CircuitElementMixin.__init__(self)
def edit(self, **kwargs: Unpack[InvControlProperties]) -> InvControl:
"""
Edit this InvControl.
This method will try to open a new edit context (if not already open),
edit the properties, and finalize the edit context.
It can be seen as a shortcut to manually setting each property, or a Pythonic
analogous (but extended) to the DSS `Edit` command.
:param **kwargs: Pass keyword arguments equivalent to the DSS properties of the object.
:return: Returns itself to allow call chaining.
"""
self._edit(props=kwargs)
return self
def _get_DERList(self) -> List[str]:
return self._get_string_array(self._lib.Obj_GetStringArray, self._ptr, 1)
def _set_DERList(self, value: List[AnyStr], flags: enums.SetterFlags = 0):
value, value_ptr, value_count = self._prepare_string_array(value)
self._lib.Obj_SetStringArray(self._ptr, 1, value_ptr, value_count, flags)
self._check_for_error()
DERList = property(_get_DERList, _set_DERList) # type: List[str]
"""
Array list of PVSystem and/or Storage elements to be controlled. If not specified, all PVSystem and Storage in the circuit are assumed to be controlled by this control.
No capability of hierarchical control between two controls for a single element is implemented at this time.
DSS property name: `DERList`, DSS property index: 1.
"""
def _get_Mode(self) -> enums.InvControlControlMode:
return enums.InvControlControlMode(self._lib.Obj_GetInt32(self._ptr, 2))
def _set_Mode(self, value: Union[AnyStr, int, enums.InvControlControlMode], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(2, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 2, value, flags)
Mode = property(_get_Mode, _set_Mode) # type: enums.InvControlControlMode
"""
Smart inverter function in which the InvControl will control the PC elements specified in DERList, according to the options below:
Must be one of: {VOLTVAR | VOLTWATT | DYNAMICREACCURR | WATTPF | WATTVAR | GFM}
if the user desires to use modes simultaneously, then set the CombiMode property. Setting the Mode to any valid value disables combination mode.
In volt-var mode. This mode attempts to CONTROL the vars, according to one or two volt-var curves, depending on the monitored voltages, present active power output, and the capabilities of the PVSystem/Storage.
In volt-watt mode. This mode attempts to LIMIT the watts, according to one defined volt-watt curve, depending on the monitored voltages and the capabilities of the PVSystem/Storage.
In dynamic reactive current mode. This mode attempts to increasingly counter deviations by CONTROLLING vars, depending on the monitored voltages, present active power output, and the capabilities of the of the PVSystem/Storage.
In watt-pf mode. This mode attempts to CONTROL the vars, according to a watt-pf curve, depending on the present active power output, and the capabilities of the PVSystem/Storage.
In watt-var mode. This mode attempts to CONTROL the vars, according to a watt-var curve, depending on the present active power output, and the capabilities of the PVSystem/Storage.
In GFM mode this control will trigger the GFM control routine for the DERs within the DERList. The GFM actiosn will only take place if the pointed DERs are in GFM mode. The controller parameters are locally setup at the DER.
NO DEFAULT
DSS property name: `Mode`, DSS property index: 2.
"""
def _get_Mode_str(self) -> str:
return self._get_prop_string(2)
def _set_Mode_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_Mode(value, flags)
Mode_str = property(_get_Mode_str, _set_Mode_str) # type: str
"""
Smart inverter function in which the InvControl will control the PC elements specified in DERList, according to the options below:
Must be one of: {VOLTVAR | VOLTWATT | DYNAMICREACCURR | WATTPF | WATTVAR | GFM}
if the user desires to use modes simultaneously, then set the CombiMode property. Setting the Mode to any valid value disables combination mode.
In volt-var mode. This mode attempts to CONTROL the vars, according to one or two volt-var curves, depending on the monitored voltages, present active power output, and the capabilities of the PVSystem/Storage.
In volt-watt mode. This mode attempts to LIMIT the watts, according to one defined volt-watt curve, depending on the monitored voltages and the capabilities of the PVSystem/Storage.
In dynamic reactive current mode. This mode attempts to increasingly counter deviations by CONTROLLING vars, depending on the monitored voltages, present active power output, and the capabilities of the of the PVSystem/Storage.
In watt-pf mode. This mode attempts to CONTROL the vars, according to a watt-pf curve, depending on the present active power output, and the capabilities of the PVSystem/Storage.
In watt-var mode. This mode attempts to CONTROL the vars, according to a watt-var curve, depending on the present active power output, and the capabilities of the PVSystem/Storage.
In GFM mode this control will trigger the GFM control routine for the DERs within the DERList. The GFM actiosn will only take place if the pointed DERs are in GFM mode. The controller parameters are locally setup at the DER.
NO DEFAULT
DSS property name: `Mode`, DSS property index: 2.
"""
def _get_CombiMode(self) -> enums.InvControlCombiMode:
return enums.InvControlCombiMode(self._lib.Obj_GetInt32(self._ptr, 3))
def _set_CombiMode(self, value: Union[AnyStr, int, enums.InvControlCombiMode], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(3, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 3, value, flags)
CombiMode = property(_get_CombiMode, _set_CombiMode) # type: enums.InvControlCombiMode
"""
Combination of smart inverter functions in which the InvControl will control the PC elements in DERList, according to the options below:
Must be a combination of the following: {VV_VW | VV_DRC}. Default is to not set this property, in which case the single control mode in Mode is active.
In combined VV_VW mode, both volt-var and volt-watt control modes are active simultaneously. See help individually for volt-var mode and volt-watt mode in Mode property.
Note that the PVSystem/Storage will attempt to achieve both the volt-watt and volt-var set-points based on the capabilities of the inverter in the PVSystem/Storage (kVA rating, etc), any limits set on maximum active power,
In combined VV_DRC, both the volt-var and the dynamic reactive current modes are simultaneously active.
DSS property name: `CombiMode`, DSS property index: 3.
"""
def _get_CombiMode_str(self) -> str:
return self._get_prop_string(3)
def _set_CombiMode_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_CombiMode(value, flags)
CombiMode_str = property(_get_CombiMode_str, _set_CombiMode_str) # type: str
"""
Combination of smart inverter functions in which the InvControl will control the PC elements in DERList, according to the options below:
Must be a combination of the following: {VV_VW | VV_DRC}. Default is to not set this property, in which case the single control mode in Mode is active.
In combined VV_VW mode, both volt-var and volt-watt control modes are active simultaneously. See help individually for volt-var mode and volt-watt mode in Mode property.
Note that the PVSystem/Storage will attempt to achieve both the volt-watt and volt-var set-points based on the capabilities of the inverter in the PVSystem/Storage (kVA rating, etc), any limits set on maximum active power,
In combined VV_DRC, both the volt-var and the dynamic reactive current modes are simultaneously active.
DSS property name: `CombiMode`, DSS property index: 3.
"""
def _get_VVC_Curve1_str(self) -> str:
return self._get_prop_string(4)
def _set_VVC_Curve1_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(4, value, flags)
VVC_Curve1_str = property(_get_VVC_Curve1_str, _set_VVC_Curve1_str) # type: str
"""
Required for VOLTVAR mode.
Name of the XYCurve object containing the volt-var curve. The positive values of the y-axis of the volt-var curve represent values in pu of the provided base reactive power. The negative values of the y-axis are values in pu of the absorbed base reactive power.
Provided and absorbed base reactive power values are defined in the RefReactivePower property
Units for the x-axis are per-unit voltage, which may be in per unit of the rated voltage for the PVSystem/Storage, or may be in per unit of the average voltage at the terminals over a user-defined number of prior solutions.
DSS property name: `VVC_Curve1`, DSS property index: 4.
"""
def _get_VVC_Curve1(self) -> XYcurve:
return self._get_obj(4, XYcurve)
def _set_VVC_Curve1(self, value: Union[AnyStr, XYcurve], flags: enums.SetterFlags = 0):
if isinstance(value, DSSObj) or value is None:
self._set_obj(4, value, flags)
return
self._set_string_o(4, value, flags)
VVC_Curve1 = property(_get_VVC_Curve1, _set_VVC_Curve1) # type: XYcurve
"""
Required for VOLTVAR mode.
Name of the XYCurve object containing the volt-var curve. The positive values of the y-axis of the volt-var curve represent values in pu of the provided base reactive power. The negative values of the y-axis are values in pu of the absorbed base reactive power.
Provided and absorbed base reactive power values are defined in the RefReactivePower property
Units for the x-axis are per-unit voltage, which may be in per unit of the rated voltage for the PVSystem/Storage, or may be in per unit of the average voltage at the terminals over a user-defined number of prior solutions.
DSS property name: `VVC_Curve1`, DSS property index: 4.
"""
def _get_Hysteresis_Offset(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 5)
def _set_Hysteresis_Offset(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 5, value, flags)
Hysteresis_Offset = property(_get_Hysteresis_Offset, _set_Hysteresis_Offset) # type: float
"""
Required for VOLTVAR mode, and defaults to 0.
for the times when the terminal voltage is decreasing, this is the off-set in per-unit voltage of a curve whose shape is the same as vvc_curve. It is offset by a certain negative value of per-unit voltage, which is defined by the base quantity for the x-axis of the volt-var curve (see help for voltage_curvex_ref)
if the PVSystem/Storage terminal voltage has been increasing, and has not changed directions, utilize vvc_curve1 for the volt-var response.
if the PVSystem/Storage terminal voltage has been increasing and changes directions and begins to decrease, then move from utilizing vvc_curve1 to a volt-var curve of the same shape, but offset by a certain per-unit voltage value.
Maintain the same per-unit available var output level (unless head-room has changed due to change in active power or kva rating of PVSystem/Storage). Per-unit var values remain the same for this internally constructed second curve (hysteresis curve).
if the terminal voltage has been decreasing and changes directions and begins to increase , then move from utilizing the offset curve, back to the vvc_curve1 for volt-var response, but stay at the same per-unit available vars output level.
DSS property name: `Hysteresis_Offset`, DSS property index: 5.
"""
def _get_Voltage_CurveX_Ref(self) -> enums.InvControlVoltageCurveXRef:
return enums.InvControlVoltageCurveXRef(self._lib.Obj_GetInt32(self._ptr, 6))
def _set_Voltage_CurveX_Ref(self, value: Union[AnyStr, int, enums.InvControlVoltageCurveXRef], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(6, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 6, value, flags)
Voltage_CurveX_Ref = property(_get_Voltage_CurveX_Ref, _set_Voltage_CurveX_Ref) # type: enums.InvControlVoltageCurveXRef
"""
Required for VOLTVAR and VOLTWATT modes, and defaults to rated. Possible values are: {rated|avg|ravg}.
Defines whether the x-axis values (voltage in per unit) for vvc_curve1 and the volt-watt curve corresponds to:
rated. The rated voltage for the PVSystem/Storage object (1.0 in the volt-var curve equals rated voltage).
avg. The average terminal voltage recorded over a certain number of prior power-flow solutions.
with the avg setting, 1.0 per unit on the x-axis of the volt-var curve(s) corresponds to the average voltage.
from a certain number of prior intervals. See avgwindowlen parameter.
ravg. Same as avg, with the exception that the avgerage terminal voltage is divided by the rated voltage.
DSS property name: `Voltage_CurveX_Ref`, DSS property index: 6.
"""
def _get_Voltage_CurveX_Ref_str(self) -> str:
return self._get_prop_string(6)
def _set_Voltage_CurveX_Ref_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_Voltage_CurveX_Ref(value, flags)
Voltage_CurveX_Ref_str = property(_get_Voltage_CurveX_Ref_str, _set_Voltage_CurveX_Ref_str) # type: str
"""
Required for VOLTVAR and VOLTWATT modes, and defaults to rated. Possible values are: {rated|avg|ravg}.
Defines whether the x-axis values (voltage in per unit) for vvc_curve1 and the volt-watt curve corresponds to:
rated. The rated voltage for the PVSystem/Storage object (1.0 in the volt-var curve equals rated voltage).
avg. The average terminal voltage recorded over a certain number of prior power-flow solutions.
with the avg setting, 1.0 per unit on the x-axis of the volt-var curve(s) corresponds to the average voltage.
from a certain number of prior intervals. See avgwindowlen parameter.
ravg. Same as avg, with the exception that the avgerage terminal voltage is divided by the rated voltage.
DSS property name: `Voltage_CurveX_Ref`, DSS property index: 6.
"""
def _get_AvgWindowLen(self) -> int:
return self._lib.Obj_GetInt32(self._ptr, 7)
def _set_AvgWindowLen(self, value: int, flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 7, value, flags)
AvgWindowLen = property(_get_AvgWindowLen, _set_AvgWindowLen) # type: int
"""
Required for VOLTVAR mode and VOLTWATT mode, and defaults to 0 seconds (0s).
Sets the length of the averaging window over which the average PVSystem/Storage terminal voltage is calculated.
Units are indicated by appending s, m, or h to the integer value.
The averaging window will calculate the average PVSystem/Storage terminal voltage over the specified period of time, up to and including the last power flow solution.
Note, if the solution stepsize is larger than the window length, then the voltage will be assumed to have been constant over the time-frame specified by the window length.
DSS property name: `AvgWindowLen`, DSS property index: 7.
"""
def _get_VoltWatt_Curve_str(self) -> str:
return self._get_prop_string(8)
def _set_VoltWatt_Curve_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(8, value, flags)
VoltWatt_Curve_str = property(_get_VoltWatt_Curve_str, _set_VoltWatt_Curve_str) # type: str
"""
Required for VOLTWATT mode.
Name of the XYCurve object containing the volt-watt curve.
Units for the x-axis are per-unit voltage, which may be in per unit of the rated voltage for the PVSystem/Storage, or may be in per unit of the average voltage at the terminals over a user-defined number of prior solutions.
Units for the y-axis are either in one of the options described in the VoltwattYAxis property.
DSS property name: `VoltWatt_Curve`, DSS property index: 8.
"""
def _get_VoltWatt_Curve(self) -> XYcurve:
return self._get_obj(8, XYcurve)
def _set_VoltWatt_Curve(self, value: Union[AnyStr, XYcurve], flags: enums.SetterFlags = 0):
if isinstance(value, DSSObj) or value is None:
self._set_obj(8, value, flags)
return
self._set_string_o(8, value, flags)
VoltWatt_Curve = property(_get_VoltWatt_Curve, _set_VoltWatt_Curve) # type: XYcurve
"""
Required for VOLTWATT mode.
Name of the XYCurve object containing the volt-watt curve.
Units for the x-axis are per-unit voltage, which may be in per unit of the rated voltage for the PVSystem/Storage, or may be in per unit of the average voltage at the terminals over a user-defined number of prior solutions.
Units for the y-axis are either in one of the options described in the VoltwattYAxis property.
DSS property name: `VoltWatt_Curve`, DSS property index: 8.
"""
def _get_DbVMin(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 9)
def _set_DbVMin(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 9, value, flags)
DbVMin = property(_get_DbVMin, _set_DbVMin) # type: float
"""
Required for the dynamic reactive current mode (DYNAMICREACCURR), and defaults to 0.95 per-unit voltage (referenced to the PVSystem/Storage object rated voltage or a windowed average value).
This parameter is the minimum voltage that defines the voltage dead-band within which no reactive power is allowed to be generated.
DSS property name: `DbVMin`, DSS property index: 9.
"""
def _get_DbVMax(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 10)
def _set_DbVMax(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 10, value, flags)
DbVMax = property(_get_DbVMax, _set_DbVMax) # type: float
"""
Required for the dynamic reactive current mode (DYNAMICREACCURR), and defaults to 1.05 per-unit voltage (referenced to the PVSystem object rated voltage or a windowed average value).
This parameter is the maximum voltage that defines the voltage dead-band within which no reactive power is allowed to be generated.
DSS property name: `DbVMax`, DSS property index: 10.
"""
def _get_ArGraLowV(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 11)
def _set_ArGraLowV(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 11, value, flags)
ArGraLowV = property(_get_ArGraLowV, _set_ArGraLowV) # type: float
"""
Required for the dynamic reactive current mode (DYNAMICREACCURR), and defaults to 0.1
This is a gradient, expressed in unit-less terms of %/%, to establish the ratio by which percentage capacitive reactive power production is increased as the percent delta-voltage decreases below DbVMin.
Percent delta-voltage is defined as the present PVSystem/Storage terminal voltage minus the moving average voltage, expressed as a percentage of the rated voltage for the PVSystem/Storage object.
Note, the moving average voltage for the dynamic reactive current mode is different than the moving average voltage for the volt-watt and volt-var modes.
DSS property name: `ArGraLowV`, DSS property index: 11.
"""
def _get_ArGraHiV(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 12)
def _set_ArGraHiV(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 12, value, flags)
ArGraHiV = property(_get_ArGraHiV, _set_ArGraHiV) # type: float
"""
Required for the dynamic reactive current mode (DYNAMICREACCURR), and defaults to 0.1
This is a gradient, expressed in unit-less terms of %/%, to establish the ratio by which percentage inductive reactive power production is increased as the percent delta-voltage decreases above DbVMax.
Percent delta-voltage is defined as the present PVSystem/Storage terminal voltage minus the moving average voltage, expressed as a percentage of the rated voltage for the PVSystem/Storage object.
Note, the moving average voltage for the dynamic reactive current mode is different than the mmoving average voltage for the volt-watt and volt-var modes.
DSS property name: `ArGraHiV`, DSS property index: 12.
"""
def _get_DynReacAvgWindowLen(self) -> int:
return self._lib.Obj_GetInt32(self._ptr, 13)
def _set_DynReacAvgWindowLen(self, value: int, flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 13, value, flags)
DynReacAvgWindowLen = property(_get_DynReacAvgWindowLen, _set_DynReacAvgWindowLen) # type: int
"""
Required for the dynamic reactive current mode (DYNAMICREACCURR), and defaults to 1 seconds (1s). do not use a value smaller than 1.0
Sets the length of the averaging window over which the average PVSystem/Storage terminal voltage is calculated for the dynamic reactive current mode.
Units are indicated by appending s, m, or h to the integer value.
Typically this will be a shorter averaging window than the volt-var and volt-watt averaging window.
The averaging window will calculate the average PVSystem/Storage terminal voltage over the specified period of time, up to and including the last power flow solution. Note, if the solution stepsize is larger than the window length, then the voltage will be assumed to have been constant over the time-frame specified by the window length.
DSS property name: `DynReacAvgWindowLen`, DSS property index: 13.
"""
def _get_DeltaQ_Factor(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 14)
def _set_DeltaQ_Factor(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 14, value, flags)
DeltaQ_Factor = property(_get_DeltaQ_Factor, _set_DeltaQ_Factor) # type: float
"""
Required for the VOLTVAR and DYNAMICREACCURR modes. Defaults to -1.0.
Defining -1.0, OpenDSS takes care internally of delta_Q itself. It tries to improve convergence as well as speed up process
Sets the maximum change (in per unit) from the prior var output level to the desired var output level during each control iteration.
if numerical instability is noticed in solutions such as var sign changing from one control iteration to the next and voltages oscillating between two values with some separation, this is an indication of numerical instability (use the EventLog to diagnose).
if the maximum control iterations are exceeded, and no numerical instability is seen in the EventLog of via monitors, then try increasing the value of this parameter to reduce the number of control iterations needed to achieve the control criteria, and move to the power flow solution.
When operating the controller using exponential control model (see CtrlModel), this parameter represents the sampling time gain of the controller, which is used for accelrating the controller response in terms of control iterations required.
DSS property name: `DeltaQ_Factor`, DSS property index: 14.
"""
def _get_VoltageChangeTolerance(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 15)
def _set_VoltageChangeTolerance(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 15, value, flags)
VoltageChangeTolerance = property(_get_VoltageChangeTolerance, _set_VoltageChangeTolerance) # type: float
"""
Defaults to 0.0001 per-unit voltage. This parameter should only be modified by advanced users of the InvControl.
Tolerance in pu of the control loop convergence associated to the monitored voltage in pu. This value is compared with the difference of the monitored voltage in pu of the current and previous control iterations of the control loop
This voltage tolerance value plus the var/watt tolerance value (VarChangeTolerance/ActivePChangeTolerance) determine, together, when to stop control iterations by the InvControl.
If an InvControl is controlling more than one PVSystem/Storage, each PVSystem/Storage has this quantity calculated independently, and so an individual PVSystem/Storage may reach the tolerance within different numbers of control iterations.
DSS property name: `VoltageChangeTolerance`, DSS property index: 15.
"""
def _get_VarChangeTolerance(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 16)
def _set_VarChangeTolerance(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 16, value, flags)
VarChangeTolerance = property(_get_VarChangeTolerance, _set_VarChangeTolerance) # type: float
"""
Required for VOLTVAR and DYNAMICREACCURR modes. Defaults to 0.025 per unit of the base provided or absorbed reactive power described in the RefReactivePower property This parameter should only be modified by advanced users of the InvControl.
Tolerance in pu of the convergence of the control loop associated with reactive power. For the same control iteration, this value is compared to the difference, as an absolute value (without sign), between the desired reactive power value in pu and the output reactive power in pu of the controlled element.
This reactive power tolerance value plus the voltage tolerance value (VoltageChangeTolerance) determine, together, when to stop control iterations by the InvControl.
If an InvControl is controlling more than one PVSystem/Storage, each PVSystem/Storage has this quantity calculated independently, and so an individual PVSystem/Storage may reach the tolerance within different numbers of control iterations.
DSS property name: `VarChangeTolerance`, DSS property index: 16.
"""
def _get_VoltWattYAxis(self) -> enums.InvControlVoltWattYAxis:
return enums.InvControlVoltWattYAxis(self._lib.Obj_GetInt32(self._ptr, 17))
def _set_VoltWattYAxis(self, value: Union[AnyStr, int, enums.InvControlVoltWattYAxis], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(17, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 17, value, flags)
VoltWattYAxis = property(_get_VoltWattYAxis, _set_VoltWattYAxis) # type: enums.InvControlVoltWattYAxis
"""
Required for VOLTWATT mode. Must be one of: {PMPPPU* | PAVAILABLEPU| PCTPMPPPU | KVARATINGPU}. The default is PMPPPU.
Units for the y-axis of the volt-watt curve while in volt-watt mode.
When set to PMPPPU. The y-axis corresponds to the value in pu of Pmpp property of the PVSystem.
When set to PAVAILABLEPU. The y-axis corresponds to the value in pu of the available active power of the PVSystem.
When set to PCTPMPPPU. The y-axis corresponds to the value in pu of the power Pmpp multiplied by 1/100 of the %Pmpp property of the PVSystem.
When set to KVARATINGPU. The y-axis corresponds to the value in pu of the kVA property of the PVSystem.
DSS property name: `VoltWattYAxis`, DSS property index: 17.
"""
def _get_VoltWattYAxis_str(self) -> str:
return self._get_prop_string(17)
def _set_VoltWattYAxis_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_VoltWattYAxis(value, flags)
VoltWattYAxis_str = property(_get_VoltWattYAxis_str, _set_VoltWattYAxis_str) # type: str
"""
Required for VOLTWATT mode. Must be one of: {PMPPPU* | PAVAILABLEPU| PCTPMPPPU | KVARATINGPU}. The default is PMPPPU.
Units for the y-axis of the volt-watt curve while in volt-watt mode.
When set to PMPPPU. The y-axis corresponds to the value in pu of Pmpp property of the PVSystem.
When set to PAVAILABLEPU. The y-axis corresponds to the value in pu of the available active power of the PVSystem.
When set to PCTPMPPPU. The y-axis corresponds to the value in pu of the power Pmpp multiplied by 1/100 of the %Pmpp property of the PVSystem.
When set to KVARATINGPU. The y-axis corresponds to the value in pu of the kVA property of the PVSystem.
DSS property name: `VoltWattYAxis`, DSS property index: 17.
"""
def _get_RateOfChangeMode(self) -> enums.InvControlRateOfChangeMode:
return enums.InvControlRateOfChangeMode(self._lib.Obj_GetInt32(self._ptr, 18))
def _set_RateOfChangeMode(self, value: Union[AnyStr, int, enums.InvControlRateOfChangeMode], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(18, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 18, value, flags)
RateOfChangeMode = property(_get_RateOfChangeMode, _set_RateOfChangeMode) # type: enums.InvControlRateOfChangeMode
"""
Required for VOLTWATT and VOLTVAR mode. Must be one of: {INACTIVE* | LPF | RISEFALL }. The default is INACTIVE.
Auxiliary option that aims to limit the changes of the desired reactive power and the active power limit between time steps, the alternatives are listed below:
INACTIVE. It indicates there is no limit on rate of change imposed for either active or reactive power output.
LPF. A low-pass RC filter is applied to the desired reactive power and/or the active power limit to determine the output power as a function of a time constant defined in the LPFTau property.
RISEFALL. A rise and fall limit in the change of active and/or reactive power expressed in terms of pu power per second, defined in the RiseFallLimit, is applied to the desired reactive power and/or the active power limit.
DSS property name: `RateOfChangeMode`, DSS property index: 18.
"""
def _get_RateOfChangeMode_str(self) -> str:
return self._get_prop_string(18)
def _set_RateOfChangeMode_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_RateOfChangeMode(value, flags)
RateOfChangeMode_str = property(_get_RateOfChangeMode_str, _set_RateOfChangeMode_str) # type: str
"""
Required for VOLTWATT and VOLTVAR mode. Must be one of: {INACTIVE* | LPF | RISEFALL }. The default is INACTIVE.
Auxiliary option that aims to limit the changes of the desired reactive power and the active power limit between time steps, the alternatives are listed below:
INACTIVE. It indicates there is no limit on rate of change imposed for either active or reactive power output.
LPF. A low-pass RC filter is applied to the desired reactive power and/or the active power limit to determine the output power as a function of a time constant defined in the LPFTau property.
RISEFALL. A rise and fall limit in the change of active and/or reactive power expressed in terms of pu power per second, defined in the RiseFallLimit, is applied to the desired reactive power and/or the active power limit.
DSS property name: `RateOfChangeMode`, DSS property index: 18.
"""
def _get_LPFTau(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 19)
def _set_LPFTau(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 19, value, flags)
LPFTau = property(_get_LPFTau, _set_LPFTau) # type: float
"""
Not required. Defaults to 0 seconds.
Filter time constant of the LPF option of the RateofChangeMode property. The time constant will cause the low-pass filter to achieve 95% of the target value in 3 time constants.
DSS property name: `LPFTau`, DSS property index: 19.
"""
def _get_RiseFallLimit(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 20)
def _set_RiseFallLimit(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 20, value, flags)
RiseFallLimit = property(_get_RiseFallLimit, _set_RiseFallLimit) # type: float
"""
Not required. Defaults to no limit (-1). Must be -1 (no limit) or a positive value.
Limit in power in pu per second used by the RISEFALL option of the RateofChangeMode property.The base value for this ramp is defined in the RefReactivePower property and/or in VoltwattYAxis.
DSS property name: `RiseFallLimit`, DSS property index: 20.
"""
def _get_DeltaP_Factor(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 21)
def _set_DeltaP_Factor(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 21, value, flags)
DeltaP_Factor = property(_get_DeltaP_Factor, _set_DeltaP_Factor) # type: float
"""
Required for the VOLTWATT modes. Defaults to -1.0.
Defining -1.0, OpenDSS takes care internally of delta_P itself. It tries to improve convergence as well as speed up process
Defining between 0.05 and 1.0, it sets the maximum change (in unit of the y-axis) from the prior active power output level to the desired active power output level during each control iteration.
If numerical instability is noticed in solutions such as active power changing substantially from one control iteration to the next and/or voltages oscillating between two values with some separation, this is an indication of numerical instability (use the EventLog to diagnose).
If the maximum control iterations are exceeded, and no numerical instability is seen in the EventLog of via monitors, then try increasing the value of this parameter to reduce the number of control iterations needed to achieve the control criteria, and move to the power flow solution.
DSS property name: `DeltaP_Factor`, DSS property index: 21.
"""
def _get_EventLog(self) -> bool:
return self._lib.Obj_GetInt32(self._ptr, 22) != 0
def _set_EventLog(self, value: bool, flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 22, value, flags)
EventLog = property(_get_EventLog, _set_EventLog) # type: bool
"""
{Yes/True | No/False*} Default is NO for InvControl. Log control actions to Eventlog.
DSS property name: `EventLog`, DSS property index: 22.
"""
def _get_RefReactivePower(self) -> enums.InvControlReactivePowerReference:
return enums.InvControlReactivePowerReference(self._lib.Obj_GetInt32(self._ptr, 23))
def _set_RefReactivePower(self, value: Union[AnyStr, int, enums.InvControlReactivePowerReference], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(23, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 23, value, flags)
RefReactivePower = property(_get_RefReactivePower, _set_RefReactivePower) # type: enums.InvControlReactivePowerReference
"""
Required for any mode that has VOLTVAR, DYNAMICREACCURR and WATTVAR. Defaults to VARAVAL.
Defines the base reactive power for both the provided and absorbed reactive power, according to one of the following options:
VARAVAL. The base values for the provided and absorbed reactive power are equal to the available reactive power.
VARMAX: The base values of the provided and absorbed reactive power are equal to the value defined in the kvarMax and kvarMaxAbs properties, respectively.
DSS property name: `RefReactivePower`, DSS property index: 23.
"""
def _get_RefReactivePower_str(self) -> str:
return self._get_prop_string(23)
def _set_RefReactivePower_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_RefReactivePower(value, flags)
RefReactivePower_str = property(_get_RefReactivePower_str, _set_RefReactivePower_str) # type: str
"""
Required for any mode that has VOLTVAR, DYNAMICREACCURR and WATTVAR. Defaults to VARAVAL.
Defines the base reactive power for both the provided and absorbed reactive power, according to one of the following options:
VARAVAL. The base values for the provided and absorbed reactive power are equal to the available reactive power.
VARMAX: The base values of the provided and absorbed reactive power are equal to the value defined in the kvarMax and kvarMaxAbs properties, respectively.
DSS property name: `RefReactivePower`, DSS property index: 23.
"""
def _get_ActivePChangeTolerance(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 24)
def _set_ActivePChangeTolerance(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 24, value, flags)
ActivePChangeTolerance = property(_get_ActivePChangeTolerance, _set_ActivePChangeTolerance) # type: float
"""
Required for VOLTWATT. Default is 0.01
Tolerance in pu of the convergence of the control loop associated with active power. For the same control iteration, this value is compared to the difference between the active power limit in pu resulted from the convergence process and the one resulted from the volt-watt function.
This reactive power tolerance value plus the voltage tolerance value (VoltageChangeTolerance) determine, together, when to stop control iterations by the InvControl.
If an InvControl is controlling more than one PVSystem/Storage, each PVSystem/Storage has this quantity calculated independently, and so an individual PVSystem/Storage may reach the tolerance within different numbers of control iterations.
DSS property name: `ActivePChangeTolerance`, DSS property index: 24.
"""
def _get_MonVoltageCalc(self) -> Union[enums.MonitoredPhase, int]:
value = self._lib.Obj_GetInt32(self._ptr, 25)
if value > 0:
return value
return enums.MonitoredPhase(value)
def _set_MonVoltageCalc(self, value: Union[AnyStr, int, enums.MonitoredPhase], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(25, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 25, value, flags)
MonVoltageCalc = property(_get_MonVoltageCalc, _set_MonVoltageCalc) # type: enums.MonitoredPhase
"""
Number of the phase being monitored or one of {AVG | MAX | MIN} for all phases. Default=AVG.
DSS property name: `MonVoltageCalc`, DSS property index: 25.
"""
def _get_MonVoltageCalc_str(self) -> str:
return self._get_prop_string(25)
def _set_MonVoltageCalc_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_MonVoltageCalc(value, flags)
MonVoltageCalc_str = property(_get_MonVoltageCalc_str, _set_MonVoltageCalc_str) # type: str
"""
Number of the phase being monitored or one of {AVG | MAX | MIN} for all phases. Default=AVG.
DSS property name: `MonVoltageCalc`, DSS property index: 25.
"""
def _get_MonBus(self) -> List[str]:
return self._get_string_array(self._lib.Obj_GetStringArray, self._ptr, 26)
def _set_MonBus(self, value: List[AnyStr], flags: enums.SetterFlags = 0):
value, value_ptr, value_count = self._prepare_string_array(value)
self._lib.Obj_SetStringArray(self._ptr, 26, value_ptr, value_count, flags)
self._check_for_error()
MonBus = property(_get_MonBus, _set_MonBus) # type: List[str]
"""
Name of monitored bus used by the voltage-dependent control modes. Default is bus of the controlled PVSystem/Storage or Storage.
DSS property name: `MonBus`, DSS property index: 26.
"""
def _get_MonBusesVBase(self) -> Float64Array:
return self._get_float64_array(self._lib.Obj_GetFloat64Array, self._ptr, 27)
def _set_MonBusesVBase(self, value: Float64Array, flags: enums.SetterFlags = 0):
self._set_float64_array_o(27, value, flags)
MonBusesVBase = property(_get_MonBusesVBase, _set_MonBusesVBase) # type: Float64Array
"""
Array list of rated voltages of the buses and their nodes presented in the monBus property. This list may have different line-to-line and/or line-to-ground voltages.
DSS property name: `MonBusesVBase`, DSS property index: 27.
"""
def _get_VoltWattCH_Curve_str(self) -> str:
return self._get_prop_string(28)
def _set_VoltWattCH_Curve_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(28, value, flags)
VoltWattCH_Curve_str = property(_get_VoltWattCH_Curve_str, _set_VoltWattCH_Curve_str) # type: str
"""
Required for VOLTWATT mode for Storage element in CHARGING state.
The name of an XYCurve object that describes the variation in active power output (in per unit of maximum active power output for the Storage).
Units for the x-axis are per-unit voltage, which may be in per unit of the rated voltage for the Storage, or may be in per unit of the average voltage at the terminals over a user-defined number of prior solutions.
Units for the y-axis are either in: (1) per unit of maximum active power output capability of the Storage, or (2) maximum available active power output capability (defined by the parameter: VoltwattYAxis), corresponding to the terminal voltage (x-axis value in per unit).
No default -- must be specified for VOLTWATT mode for Storage element in CHARGING state.
DSS property name: `VoltWattCH_Curve`, DSS property index: 28.
"""
def _get_VoltWattCH_Curve(self) -> XYcurve:
return self._get_obj(28, XYcurve)
def _set_VoltWattCH_Curve(self, value: Union[AnyStr, XYcurve], flags: enums.SetterFlags = 0):
if isinstance(value, DSSObj) or value is None:
self._set_obj(28, value, flags)
return
self._set_string_o(28, value, flags)
VoltWattCH_Curve = property(_get_VoltWattCH_Curve, _set_VoltWattCH_Curve) # type: XYcurve
"""
Required for VOLTWATT mode for Storage element in CHARGING state.
The name of an XYCurve object that describes the variation in active power output (in per unit of maximum active power output for the Storage).
Units for the x-axis are per-unit voltage, which may be in per unit of the rated voltage for the Storage, or may be in per unit of the average voltage at the terminals over a user-defined number of prior solutions.
Units for the y-axis are either in: (1) per unit of maximum active power output capability of the Storage, or (2) maximum available active power output capability (defined by the parameter: VoltwattYAxis), corresponding to the terminal voltage (x-axis value in per unit).
No default -- must be specified for VOLTWATT mode for Storage element in CHARGING state.
DSS property name: `VoltWattCH_Curve`, DSS property index: 28.
"""
def _get_WattPF_Curve_str(self) -> str:
return self._get_prop_string(29)
def _set_WattPF_Curve_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(29, value, flags)
WattPF_Curve_str = property(_get_WattPF_Curve_str, _set_WattPF_Curve_str) # type: str
"""
Required for WATTPF mode.
Name of the XYCurve object containing the watt-pf curve.
The positive values of the y-axis are positive power factor values. The negative values of the the y-axis are negative power factor values. When positive, the output reactive power has the same direction of the output active power, and when negative, it has the opposite direction.
Units for the x-axis are per-unit output active power, and the base active power is the Pmpp for PVSystem and kWrated for Storage.
The y-axis represents the power factor and the reference is power factor equal to 0.
For example, if the user wants to define the following XY coordinates: (0, 0.9); (0.2, 0.9); (0.5, -0.9); (1, -0.9).
Try to plot them considering the y-axis reference equal to unity power factor.
The user needs to translate this curve into a plot in which the y-axis reference is equal to 0 power factor.It means that two new XY coordinates need to be included, in this case they are: (0.35, 1); (0.35, -1).
Try to plot them considering the y-axis reference equal to 0 power factor.
The discontinuity in 0.35pu is not a problem since var is zero for either power factor equal to 1 or -1.
DSS property name: `WattPF_Curve`, DSS property index: 29.
"""
def _get_WattPF_Curve(self) -> XYcurve:
return self._get_obj(29, XYcurve)
def _set_WattPF_Curve(self, value: Union[AnyStr, XYcurve], flags: enums.SetterFlags = 0):
if isinstance(value, DSSObj) or value is None:
self._set_obj(29, value, flags)
return
self._set_string_o(29, value, flags)
WattPF_Curve = property(_get_WattPF_Curve, _set_WattPF_Curve) # type: XYcurve
"""
Required for WATTPF mode.
Name of the XYCurve object containing the watt-pf curve.
The positive values of the y-axis are positive power factor values. The negative values of the the y-axis are negative power factor values. When positive, the output reactive power has the same direction of the output active power, and when negative, it has the opposite direction.
Units for the x-axis are per-unit output active power, and the base active power is the Pmpp for PVSystem and kWrated for Storage.
The y-axis represents the power factor and the reference is power factor equal to 0.
For example, if the user wants to define the following XY coordinates: (0, 0.9); (0.2, 0.9); (0.5, -0.9); (1, -0.9).
Try to plot them considering the y-axis reference equal to unity power factor.
The user needs to translate this curve into a plot in which the y-axis reference is equal to 0 power factor.It means that two new XY coordinates need to be included, in this case they are: (0.35, 1); (0.35, -1).
Try to plot them considering the y-axis reference equal to 0 power factor.
The discontinuity in 0.35pu is not a problem since var is zero for either power factor equal to 1 or -1.
DSS property name: `WattPF_Curve`, DSS property index: 29.
"""
def _get_WattVar_Curve_str(self) -> str:
return self._get_prop_string(30)
def _set_WattVar_Curve_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(30, value, flags)
WattVar_Curve_str = property(_get_WattVar_Curve_str, _set_WattVar_Curve_str) # type: str
"""
Required for WATTVAR mode.
Name of the XYCurve object containing the watt-var curve. The positive values of the y-axis of the watt-var curve represent values in pu of the provided base reactive power. The negative values of the y-axis are values in pu of the absorbed base reactive power.
Provided and absorbed base reactive power values are defined in the RefReactivePower property.
Units for the x-axis are per-unit output active power, and the base active power is the Pmpp for PVSystem and kWrated for Storage.
DSS property name: `WattVar_Curve`, DSS property index: 30.
"""
def _get_WattVar_Curve(self) -> XYcurve:
return self._get_obj(30, XYcurve)
def _set_WattVar_Curve(self, value: Union[AnyStr, XYcurve], flags: enums.SetterFlags = 0):
if isinstance(value, DSSObj) or value is None:
self._set_obj(30, value, flags)
return
self._set_string_o(30, value, flags)
WattVar_Curve = property(_get_WattVar_Curve, _set_WattVar_Curve) # type: XYcurve
"""
Required for WATTVAR mode.
Name of the XYCurve object containing the watt-var curve. The positive values of the y-axis of the watt-var curve represent values in pu of the provided base reactive power. The negative values of the y-axis are values in pu of the absorbed base reactive power.
Provided and absorbed base reactive power values are defined in the RefReactivePower property.
Units for the x-axis are per-unit output active power, and the base active power is the Pmpp for PVSystem and kWrated for Storage.
DSS property name: `WattVar_Curve`, DSS property index: 30.
"""
def _get_VSetPoint(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 33)
def _set_VSetPoint(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 33, value, flags)
VSetPoint = property(_get_VSetPoint, _set_VSetPoint) # type: float
"""
Required for Active Voltage Regulation (AVR).
DSS property name: `VSetPoint`, DSS property index: 33.
"""
def _get_ControlModel(self) -> enums.InvControlControlModel:
return enums.InvControlControlModel(self._lib.Obj_GetInt32(self._ptr, 34))
def _set_ControlModel(self, value: Union[int, enums.InvControlControlModel], flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 34, value, flags)