-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoadShape.py
894 lines (664 loc) · 37.4 KB
/
LoadShape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
# Copyright (c) 2021-2024 Paulo Meira
# Copyright (c) 2021-2024 DSS-Extensions contributors
from __future__ import annotations
from typing import Union, List, AnyStr, Optional, Iterator, TYPE_CHECKING
from typing_extensions import TypedDict, Unpack
from .types import Float64Array, Int32Array
from . import enums
from .DSSObj import IDSSObj, DSSObj
from .Batch import DSSBatch
from .ArrayProxy import BatchFloat64ArrayProxy, BatchInt32ArrayProxy
from .common import LIST_LIKE
from .LoadShapeExtras import LoadShapeBatchMixin, LoadShapeObjMixin
class LoadShape(DSSObj, LoadShapeObjMixin):
__slots__ = DSSObj._extra_slots + LoadShapeObjMixin._extra_slots
_cls_name = 'LoadShape'
_cls_idx = 2
_cls_int_idx = {
1,
12,
21,
22,
}
_cls_float_idx = {
2,
5,
6,
13,
14,
15,
16,
17,
18,
}
_cls_prop_idx = {
'npts': 1,
'interval': 2,
'mult': 3,
'hour': 4,
'mean': 5,
'stddev': 6,
'csvfile': 7,
'sngfile': 8,
'dblfile': 9,
'action': 10,
'qmult': 11,
'useactual': 12,
'pmax': 13,
'qmax': 14,
'sinterval': 15,
'minterval': 16,
'pbase': 17,
'qbase': 18,
'pmult': 19,
'pqcsvfile': 20,
'memorymapping': 21,
'interpolation': 22,
'like': 23,
}
def __init__(self, api_util, ptr):
DSSObj.__init__(self, api_util, ptr)
LoadShapeObjMixin.__init__(self)
def edit(self, **kwargs: Unpack[LoadShapeProperties]) -> LoadShape:
"""
Edit this LoadShape.
This method will try to open a new edit context (if not already open),
edit the properties, and finalize the edit context.
It can be seen as a shortcut to manually setting each property, or a Pythonic
analogous (but extended) to the DSS `Edit` command.
:param **kwargs: Pass keyword arguments equivalent to the DSS properties of the object.
:return: Returns itself to allow call chaining.
"""
self._edit(props=kwargs)
return self
def _get_NPts(self) -> int:
return self._lib.Obj_GetInt32(self._ptr, 1)
def _set_NPts(self, value: int, flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 1, value, flags)
NPts = property(_get_NPts, _set_NPts) # type: int
"""
Max number of points to expect in load shape vectors. This gets reset to the number of multiplier values found (in files only) if less than specified.
DSS property name: `NPts`, DSS property index: 1.
"""
def _get_Interval(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 2)
def _set_Interval(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 2, value, flags)
Interval = property(_get_Interval, _set_Interval) # type: float
"""
Time interval for fixed interval data, hrs. Default = 1. If Interval = 0 then time data (in hours) may be at either regular or irregular intervals and time value must be specified using either the Hour property or input files. Then values are interpolated when Interval=0, but not for fixed interval data.
See also "sinterval" and "minterval".
DSS property name: `Interval`, DSS property index: 2.
"""
def _get_Hour(self) -> Float64Array:
return self._get_float64_array(self._lib.Obj_GetFloat64Array, self._ptr, 4)
def _set_Hour(self, value: Float64Array, flags: enums.SetterFlags = 0):
self._set_float64_array_o(4, value, flags)
Hour = property(_get_Hour, _set_Hour) # type: Float64Array
"""
Array of hour values. Only necessary to define for variable interval data (Interval=0). If you set Interval>0 to denote fixed interval data, DO NOT USE THIS PROPERTY. You can also use the syntax:
hour = (file=filename) !for text file one value per line
hour = (dblfile=filename) !for packed file of doubles
hour = (sngfile=filename) !for packed file of singles
DSS property name: `Hour`, DSS property index: 4.
"""
def _get_Mean(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 5)
def _set_Mean(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 5, value, flags)
Mean = property(_get_Mean, _set_Mean) # type: float
"""
Mean of the active power multipliers. This is computed on demand the first time a value is needed. However, you may set it to another value independently. Used for Monte Carlo load simulations.
DSS property name: `Mean`, DSS property index: 5.
"""
def _get_StdDev(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 6)
def _set_StdDev(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 6, value, flags)
StdDev = property(_get_StdDev, _set_StdDev) # type: float
"""
Standard deviation of active power multipliers. This is computed on demand the first time a value is needed. However, you may set it to another value independently.Is overwritten if you subsequently read in a curve
Used for Monte Carlo load simulations.
DSS property name: `StdDev`, DSS property index: 6.
"""
def _get_CSVFile(self) -> str:
return self._get_prop_string(7)
def _set_CSVFile(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(7, value, flags)
CSVFile = property(_get_CSVFile, _set_CSVFile) # type: str
"""
Switch input of active power load curve data to a CSV text file containing (hour, mult) points, or simply (mult) values for fixed time interval data, one per line. NOTE: This action may reset the number of points to a lower value.
DSS property name: `CSVFile`, DSS property index: 7.
"""
def _get_SngFile(self) -> str:
return self._get_prop_string(8)
def _set_SngFile(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(8, value, flags)
SngFile = property(_get_SngFile, _set_SngFile) # type: str
"""
Switch input of active power load curve data to a binary file of singles containing (hour, mult) points, or simply (mult) values for fixed time interval data, packed one after another. NOTE: This action may reset the number of points to a lower value.
DSS property name: `SngFile`, DSS property index: 8.
"""
def _get_DblFile(self) -> str:
return self._get_prop_string(9)
def _set_DblFile(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(9, value, flags)
DblFile = property(_get_DblFile, _set_DblFile) # type: str
"""
Switch input of active power load curve data to a binary file of doubles containing (hour, mult) points, or simply (mult) values for fixed time interval data, packed one after another. NOTE: This action may reset the number of points to a lower value.
DSS property name: `DblFile`, DSS property index: 9.
"""
def Action(self, value: Union[AnyStr, int, enums.LoadShapeAction], flags: enums.SetterFlags = 0):
"""
{NORMALIZE | DblSave | SngSave} After defining load curve data, setting action=normalize will modify the multipliers so that the peak is 1.0. The mean and std deviation are recomputed.
Setting action=DblSave or SngSave will cause the present mult and qmult values to be written to either a packed file of double or single. The filename is the loadshape name. The mult array will have a "_P" appended on the file name and the qmult array, if it exists, will have "_Q" appended.
DSS property name: `Action`, DSS property index: 10.
"""
if isinstance(value, int):
self._lib.Obj_SetInt32(self._ptr, 10, value, flags)
return
self._set_string_o(10, value)
def Normalize(self, flags: enums.SetterFlags = 0):
'''Shortcut to Action(LoadShapeAction.Normalize)'''
self._lib.Obj_SetInt32(self._ptr, 10, enums.LoadShapeAction.Normalize, flags)
def DblSave(self, flags: enums.SetterFlags = 0):
'''Shortcut to Action(LoadShapeAction.DblSave)'''
self._lib.Obj_SetInt32(self._ptr, 10, enums.LoadShapeAction.DblSave, flags)
def SngSave(self, flags: enums.SetterFlags = 0):
'''Shortcut to Action(LoadShapeAction.SngSave)'''
self._lib.Obj_SetInt32(self._ptr, 10, enums.LoadShapeAction.SngSave, flags)
def _get_QMult(self) -> Float64Array:
return self._get_float64_array(self._lib.Obj_GetFloat64Array, self._ptr, 11)
def _set_QMult(self, value: Float64Array, flags: enums.SetterFlags = 0):
self._set_float64_array_o(11, value, flags)
QMult = property(_get_QMult, _set_QMult) # type: Float64Array
"""
Array of multiplier values for reactive power (Q). You can also use the syntax:
qmult = (file=filename) !for text file one value per line
qmult = (dblfile=filename) !for packed file of doubles
qmult = (sngfile=filename) !for packed file of singles
qmult = (file=MyCSVFile.csv, col=4, header=yes) !for multicolumn CSV files
DSS property name: `QMult`, DSS property index: 11.
"""
def _get_UseActual(self) -> bool:
return self._lib.Obj_GetInt32(self._ptr, 12) != 0
def _set_UseActual(self, value: bool, flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 12, value, flags)
UseActual = property(_get_UseActual, _set_UseActual) # type: bool
"""
{Yes | No* | True | False*} If true, signifies to Load, Generator, Vsource, or other objects to use the return value as the actual kW, kvar, kV, or other value rather than a multiplier. Nominally for AMI Load data but may be used for other functions.
DSS property name: `UseActual`, DSS property index: 12.
"""
def _get_PMax(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 13)
def _set_PMax(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 13, value, flags)
PMax = property(_get_PMax, _set_PMax) # type: float
"""
kW value at the time of max power. Is automatically set upon reading in a loadshape. Use this property to override the value automatically computed or to retrieve the value computed.
DSS property name: `PMax`, DSS property index: 13.
"""
def _get_QMax(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 14)
def _set_QMax(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 14, value, flags)
QMax = property(_get_QMax, _set_QMax) # type: float
"""
kvar value at the time of max kW power. Is automatically set upon reading in a loadshape. Use this property to override the value automatically computed or to retrieve the value computed.
DSS property name: `QMax`, DSS property index: 14.
"""
def _get_SInterval(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 15)
def _set_SInterval(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 15, value, flags)
SInterval = property(_get_SInterval, _set_SInterval) # type: float
"""
Specify fixed interval in SECONDS. Alternate way to specify Interval property.
DSS property name: `SInterval`, DSS property index: 15.
"""
def _get_MInterval(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 16)
def _set_MInterval(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 16, value, flags)
MInterval = property(_get_MInterval, _set_MInterval) # type: float
"""
Specify fixed interval in MINUTES. Alternate way to specify Interval property.
DSS property name: `MInterval`, DSS property index: 16.
"""
def _get_PBase(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 17)
def _set_PBase(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 17, value, flags)
PBase = property(_get_PBase, _set_PBase) # type: float
"""
Base P value for normalization. Default is zero, meaning the peak will be used.
DSS property name: `PBase`, DSS property index: 17.
"""
def _get_QBase(self) -> float:
return self._lib.Obj_GetFloat64(self._ptr, 18)
def _set_QBase(self, value: float, flags: enums.SetterFlags = 0):
self._lib.Obj_SetFloat64(self._ptr, 18, value, flags)
QBase = property(_get_QBase, _set_QBase) # type: float
"""
Base Q value for normalization. Default is zero, meaning the peak will be used.
DSS property name: `QBase`, DSS property index: 18.
"""
def _get_PMult(self) -> Float64Array:
return self._get_float64_array(self._lib.Obj_GetFloat64Array, self._ptr, 19)
def _set_PMult(self, value: Float64Array, flags: enums.SetterFlags = 0):
self._set_float64_array_o(19, value, flags)
PMult = property(_get_PMult, _set_PMult) # type: Float64Array
"""
Synonym for "mult".
DSS property name: `PMult`, DSS property index: 19.
"""
def _get_PQCSVFile(self) -> str:
return self._get_prop_string(20)
def _set_PQCSVFile(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_string_o(20, value, flags)
PQCSVFile = property(_get_PQCSVFile, _set_PQCSVFile) # type: str
"""
Switch input to a CSV text file containing (active, reactive) power (P, Q) multiplier pairs, one per row.
If the interval=0, there should be 3 items on each line: (hour, Pmult, Qmult)
DSS property name: `PQCSVFile`, DSS property index: 20.
"""
def _get_MemoryMapping(self) -> bool:
return self._lib.Obj_GetInt32(self._ptr, 21) != 0
def _set_MemoryMapping(self, value: bool, flags: enums.SetterFlags = 0):
self._lib.Obj_SetInt32(self._ptr, 21, value, flags)
MemoryMapping = property(_get_MemoryMapping, _set_MemoryMapping) # type: bool
"""
{Yes | No* | True | False*} Enables the memory mapping functionality for dealing with large amounts of load shapes.
By default is False. Use it to accelerate the model loading when the containing a large number of load shapes.
DSS property name: `MemoryMapping`, DSS property index: 21.
"""
def _get_Interpolation(self) -> enums.LoadShapeInterpolation:
return enums.LoadShapeInterpolation(self._lib.Obj_GetInt32(self._ptr, 22))
def _set_Interpolation(self, value: Union[AnyStr, int, enums.LoadShapeInterpolation], flags: enums.SetterFlags = 0):
if not isinstance(value, int):
self._set_string_o(22, value, flags)
return
self._lib.Obj_SetInt32(self._ptr, 22, value, flags)
Interpolation = property(_get_Interpolation, _set_Interpolation) # type: enums.LoadShapeInterpolation
"""
{AVG* | EDGE} Defines the interpolation method used for connecting distant dots within the load shape.
By default is AVG (average), which will return a multiplier for missing intervals based on the closest multiplier in time.
EDGE interpolation keeps the last known value for missing intervals until the next defined multiplier arrives.
DSS property name: `Interpolation`, DSS property index: 22.
"""
def _get_Interpolation_str(self) -> str:
return self._get_prop_string(22)
def _set_Interpolation_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_Interpolation(value, flags)
Interpolation_str = property(_get_Interpolation_str, _set_Interpolation_str) # type: str
"""
{AVG* | EDGE} Defines the interpolation method used for connecting distant dots within the load shape.
By default is AVG (average), which will return a multiplier for missing intervals based on the closest multiplier in time.
EDGE interpolation keeps the last known value for missing intervals until the next defined multiplier arrives.
DSS property name: `Interpolation`, DSS property index: 22.
"""
def Like(self, value: AnyStr):
"""
Make like another object, e.g.:
New Capacitor.C2 like=c1 ...
DSS property name: `Like`, DSS property index: 23.
"""
self._set_string_o(23, value)
class LoadShapeProperties(TypedDict):
NPts: int
Interval: float
Hour: Float64Array
Mean: float
StdDev: float
CSVFile: AnyStr
SngFile: AnyStr
DblFile: AnyStr
Action: Union[AnyStr, int, enums.LoadShapeAction]
QMult: Float64Array
UseActual: bool
PMax: float
QMax: float
SInterval: float
MInterval: float
PBase: float
QBase: float
PMult: Float64Array
PQCSVFile: AnyStr
MemoryMapping: bool
Interpolation: Union[AnyStr, int, enums.LoadShapeInterpolation]
Like: AnyStr
class LoadShapeBatch(DSSBatch, LoadShapeBatchMixin):
_cls_name = 'LoadShape'
_obj_cls = LoadShape
_cls_idx = 2
__slots__ = []
def __init__(self, api_util, **kwargs):
DSSBatch.__init__(self, api_util, **kwargs)
LoadShapeBatchMixin.__init__(self)
def edit(self, **kwargs: Unpack[LoadShapeBatchProperties]) -> LoadShapeBatch:
"""
Edit this LoadShape batch.
This method will try to open a new edit context (if not already open),
edit the properties, and finalize the edit context for objects in the batch.
It can be seen as a shortcut to manually setting each property, or a Pythonic
analogous (but extended) to the DSS `BatchEdit` command.
:param **kwargs: Pass keyword arguments equivalent to the DSS properties of the objects.
:return: Returns itself to allow call chaining.
"""
self._edit(props=kwargs)
return self
if TYPE_CHECKING:
def __iter__(self) -> Iterator[LoadShape]:
yield from DSSBatch.__iter__(self)
def _get_NPts(self) -> BatchInt32ArrayProxy:
return BatchInt32ArrayProxy(self, 1)
def _set_NPts(self, value: Union[int, Int32Array], flags: enums.SetterFlags = 0):
self._set_batch_int32_array(1, value, flags)
NPts = property(_get_NPts, _set_NPts) # type: BatchInt32ArrayProxy
"""
Max number of points to expect in load shape vectors. This gets reset to the number of multiplier values found (in files only) if less than specified.
DSS property name: `NPts`, DSS property index: 1.
"""
def _get_Interval(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 2)
def _set_Interval(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(2, value, flags)
Interval = property(_get_Interval, _set_Interval) # type: BatchFloat64ArrayProxy
"""
Time interval for fixed interval data, hrs. Default = 1. If Interval = 0 then time data (in hours) may be at either regular or irregular intervals and time value must be specified using either the Hour property or input files. Then values are interpolated when Interval=0, but not for fixed interval data.
See also "sinterval" and "minterval".
DSS property name: `Interval`, DSS property index: 2.
"""
def _get_Hour(self) -> List[Float64Array]:
return [
self._get_float64_array(self._lib.Obj_GetFloat64Array, x, 4)
for x in self._unpack()
]
def _set_Hour(self, value: Union[Float64Array, List[Float64Array]], flags: enums.SetterFlags = 0):
self._set_batch_float64_array_prop(4, value, flags)
Hour = property(_get_Hour, _set_Hour) # type: List[Float64Array]
"""
Array of hour values. Only necessary to define for variable interval data (Interval=0). If you set Interval>0 to denote fixed interval data, DO NOT USE THIS PROPERTY. You can also use the syntax:
hour = (file=filename) !for text file one value per line
hour = (dblfile=filename) !for packed file of doubles
hour = (sngfile=filename) !for packed file of singles
DSS property name: `Hour`, DSS property index: 4.
"""
def _get_Mean(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 5)
def _set_Mean(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(5, value, flags)
Mean = property(_get_Mean, _set_Mean) # type: BatchFloat64ArrayProxy
"""
Mean of the active power multipliers. This is computed on demand the first time a value is needed. However, you may set it to another value independently. Used for Monte Carlo load simulations.
DSS property name: `Mean`, DSS property index: 5.
"""
def _get_StdDev(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 6)
def _set_StdDev(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(6, value, flags)
StdDev = property(_get_StdDev, _set_StdDev) # type: BatchFloat64ArrayProxy
"""
Standard deviation of active power multipliers. This is computed on demand the first time a value is needed. However, you may set it to another value independently.Is overwritten if you subsequently read in a curve
Used for Monte Carlo load simulations.
DSS property name: `StdDev`, DSS property index: 6.
"""
def _get_CSVFile(self) -> List[str]:
return self._get_batch_str_prop(7)
def _set_CSVFile(self, value: Union[AnyStr, List[AnyStr]], flags: enums.SetterFlags = 0):
self._set_batch_string(7, value, flags)
CSVFile = property(_get_CSVFile, _set_CSVFile) # type: List[str]
"""
Switch input of active power load curve data to a CSV text file containing (hour, mult) points, or simply (mult) values for fixed time interval data, one per line. NOTE: This action may reset the number of points to a lower value.
DSS property name: `CSVFile`, DSS property index: 7.
"""
def _get_SngFile(self) -> List[str]:
return self._get_batch_str_prop(8)
def _set_SngFile(self, value: Union[AnyStr, List[AnyStr]], flags: enums.SetterFlags = 0):
self._set_batch_string(8, value, flags)
SngFile = property(_get_SngFile, _set_SngFile) # type: List[str]
"""
Switch input of active power load curve data to a binary file of singles containing (hour, mult) points, or simply (mult) values for fixed time interval data, packed one after another. NOTE: This action may reset the number of points to a lower value.
DSS property name: `SngFile`, DSS property index: 8.
"""
def _get_DblFile(self) -> List[str]:
return self._get_batch_str_prop(9)
def _set_DblFile(self, value: Union[AnyStr, List[AnyStr]], flags: enums.SetterFlags = 0):
self._set_batch_string(9, value, flags)
DblFile = property(_get_DblFile, _set_DblFile) # type: List[str]
"""
Switch input of active power load curve data to a binary file of doubles containing (hour, mult) points, or simply (mult) values for fixed time interval data, packed one after another. NOTE: This action may reset the number of points to a lower value.
DSS property name: `DblFile`, DSS property index: 9.
"""
def Action(self, value: Union[AnyStr, int, enums.LoadShapeAction], flags: enums.SetterFlags = 0):
"""
{NORMALIZE | DblSave | SngSave} After defining load curve data, setting action=normalize will modify the multipliers so that the peak is 1.0. The mean and std deviation are recomputed.
Setting action=DblSave or SngSave will cause the present mult and qmult values to be written to either a packed file of double or single. The filename is the loadshape name. The mult array will have a "_P" appended on the file name and the qmult array, if it exists, will have "_Q" appended.
DSS property name: `Action`, DSS property index: 10.
"""
if isinstance(value, (bytes, str)) or (isinstance(value, LIST_LIKE) and len(value) > 0 and isinstance(value[0], (bytes, str))):
self._set_batch_string(10, value, flags)
else:
self._set_batch_int32_array(10, value, flags)
def Normalize(self, flags: enums.SetterFlags = 0):
'''Shortcut to Action(LoadShapeAction.Normalize)'''
self._set_batch_int32_array(10, enums.LoadShapeAction.Normalize, flags)
def DblSave(self, flags: enums.SetterFlags = 0):
'''Shortcut to Action(LoadShapeAction.DblSave)'''
self._set_batch_int32_array(10, enums.LoadShapeAction.DblSave, flags)
def SngSave(self, flags: enums.SetterFlags = 0):
'''Shortcut to Action(LoadShapeAction.SngSave)'''
self._set_batch_int32_array(10, enums.LoadShapeAction.SngSave, flags)
def _get_QMult(self) -> List[Float64Array]:
return [
self._get_float64_array(self._lib.Obj_GetFloat64Array, x, 11)
for x in self._unpack()
]
def _set_QMult(self, value: Union[Float64Array, List[Float64Array]], flags: enums.SetterFlags = 0):
self._set_batch_float64_array_prop(11, value, flags)
QMult = property(_get_QMult, _set_QMult) # type: List[Float64Array]
"""
Array of multiplier values for reactive power (Q). You can also use the syntax:
qmult = (file=filename) !for text file one value per line
qmult = (dblfile=filename) !for packed file of doubles
qmult = (sngfile=filename) !for packed file of singles
qmult = (file=MyCSVFile.csv, col=4, header=yes) !for multicolumn CSV files
DSS property name: `QMult`, DSS property index: 11.
"""
def _get_UseActual(self) -> List[bool]:
return [v != 0 for v in
self._get_batch_int32_prop(12)
]
def _set_UseActual(self, value: bool, flags: enums.SetterFlags = 0):
self._set_batch_int32_array(12, value, flags)
UseActual = property(_get_UseActual, _set_UseActual) # type: List[bool]
"""
{Yes | No* | True | False*} If true, signifies to Load, Generator, Vsource, or other objects to use the return value as the actual kW, kvar, kV, or other value rather than a multiplier. Nominally for AMI Load data but may be used for other functions.
DSS property name: `UseActual`, DSS property index: 12.
"""
def _get_PMax(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 13)
def _set_PMax(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(13, value, flags)
PMax = property(_get_PMax, _set_PMax) # type: BatchFloat64ArrayProxy
"""
kW value at the time of max power. Is automatically set upon reading in a loadshape. Use this property to override the value automatically computed or to retrieve the value computed.
DSS property name: `PMax`, DSS property index: 13.
"""
def _get_QMax(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 14)
def _set_QMax(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(14, value, flags)
QMax = property(_get_QMax, _set_QMax) # type: BatchFloat64ArrayProxy
"""
kvar value at the time of max kW power. Is automatically set upon reading in a loadshape. Use this property to override the value automatically computed or to retrieve the value computed.
DSS property name: `QMax`, DSS property index: 14.
"""
def _get_SInterval(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 15)
def _set_SInterval(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(15, value, flags)
SInterval = property(_get_SInterval, _set_SInterval) # type: BatchFloat64ArrayProxy
"""
Specify fixed interval in SECONDS. Alternate way to specify Interval property.
DSS property name: `SInterval`, DSS property index: 15.
"""
def _get_MInterval(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 16)
def _set_MInterval(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(16, value, flags)
MInterval = property(_get_MInterval, _set_MInterval) # type: BatchFloat64ArrayProxy
"""
Specify fixed interval in MINUTES. Alternate way to specify Interval property.
DSS property name: `MInterval`, DSS property index: 16.
"""
def _get_PBase(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 17)
def _set_PBase(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(17, value, flags)
PBase = property(_get_PBase, _set_PBase) # type: BatchFloat64ArrayProxy
"""
Base P value for normalization. Default is zero, meaning the peak will be used.
DSS property name: `PBase`, DSS property index: 17.
"""
def _get_QBase(self) -> BatchFloat64ArrayProxy:
return BatchFloat64ArrayProxy(self, 18)
def _set_QBase(self, value: Union[float, Float64Array], flags: enums.SetterFlags = 0):
self._set_batch_float64_array(18, value, flags)
QBase = property(_get_QBase, _set_QBase) # type: BatchFloat64ArrayProxy
"""
Base Q value for normalization. Default is zero, meaning the peak will be used.
DSS property name: `QBase`, DSS property index: 18.
"""
def _get_PMult(self) -> List[Float64Array]:
return [
self._get_float64_array(self._lib.Obj_GetFloat64Array, x, 19)
for x in self._unpack()
]
def _set_PMult(self, value: Union[Float64Array, List[Float64Array]], flags: enums.SetterFlags = 0):
self._set_batch_float64_array_prop(19, value, flags)
PMult = property(_get_PMult, _set_PMult) # type: List[Float64Array]
"""
Synonym for "mult".
DSS property name: `PMult`, DSS property index: 19.
"""
def _get_PQCSVFile(self) -> List[str]:
return self._get_batch_str_prop(20)
def _set_PQCSVFile(self, value: Union[AnyStr, List[AnyStr]], flags: enums.SetterFlags = 0):
self._set_batch_string(20, value, flags)
PQCSVFile = property(_get_PQCSVFile, _set_PQCSVFile) # type: List[str]
"""
Switch input to a CSV text file containing (active, reactive) power (P, Q) multiplier pairs, one per row.
If the interval=0, there should be 3 items on each line: (hour, Pmult, Qmult)
DSS property name: `PQCSVFile`, DSS property index: 20.
"""
def _get_MemoryMapping(self) -> List[bool]:
return [v != 0 for v in
self._get_batch_int32_prop(21)
]
def _set_MemoryMapping(self, value: bool, flags: enums.SetterFlags = 0):
self._set_batch_int32_array(21, value, flags)
MemoryMapping = property(_get_MemoryMapping, _set_MemoryMapping) # type: List[bool]
"""
{Yes | No* | True | False*} Enables the memory mapping functionality for dealing with large amounts of load shapes.
By default is False. Use it to accelerate the model loading when the containing a large number of load shapes.
DSS property name: `MemoryMapping`, DSS property index: 21.
"""
def _get_Interpolation(self) -> BatchInt32ArrayProxy:
return BatchInt32ArrayProxy(self, 22)
def _set_Interpolation(self, value: Union[AnyStr, int, enums.LoadShapeInterpolation, List[AnyStr], List[int], List[enums.LoadShapeInterpolation], Int32Array], flags: enums.SetterFlags = 0):
if isinstance(value, (str, bytes)) or (isinstance(value, LIST_LIKE) and isinstance(value[0], (str, bytes))):
self._set_batch_string(22, value, flags)
return
self._set_batch_int32_array(22, value, flags)
Interpolation = property(_get_Interpolation, _set_Interpolation) # type: BatchInt32ArrayProxy
"""
{AVG* | EDGE} Defines the interpolation method used for connecting distant dots within the load shape.
By default is AVG (average), which will return a multiplier for missing intervals based on the closest multiplier in time.
EDGE interpolation keeps the last known value for missing intervals until the next defined multiplier arrives.
DSS property name: `Interpolation`, DSS property index: 22.
"""
def _get_Interpolation_str(self) -> List[str]:
return self._get_batch_str_prop(22)
def _set_Interpolation_str(self, value: AnyStr, flags: enums.SetterFlags = 0):
self._set_Interpolation(value, flags)
Interpolation_str = property(_get_Interpolation_str, _set_Interpolation_str) # type: List[str]
"""
{AVG* | EDGE} Defines the interpolation method used for connecting distant dots within the load shape.
By default is AVG (average), which will return a multiplier for missing intervals based on the closest multiplier in time.
EDGE interpolation keeps the last known value for missing intervals until the next defined multiplier arrives.
DSS property name: `Interpolation`, DSS property index: 22.
"""
def Like(self, value: AnyStr, flags: enums.SetterFlags = 0):
"""
Make like another object, e.g.:
New Capacitor.C2 like=c1 ...
DSS property name: `Like`, DSS property index: 23.
"""
self._set_batch_string(23, value, flags)
class LoadShapeBatchProperties(TypedDict):
NPts: Union[int, Int32Array]
Interval: Union[float, Float64Array]
Hour: Float64Array
Mean: Union[float, Float64Array]
StdDev: Union[float, Float64Array]
CSVFile: Union[AnyStr, List[AnyStr]]
SngFile: Union[AnyStr, List[AnyStr]]
DblFile: Union[AnyStr, List[AnyStr]]
Action: Union[AnyStr, int, enums.LoadShapeAction]
QMult: Float64Array
UseActual: bool
PMax: Union[float, Float64Array]
QMax: Union[float, Float64Array]
SInterval: Union[float, Float64Array]
MInterval: Union[float, Float64Array]
PBase: Union[float, Float64Array]
QBase: Union[float, Float64Array]
PMult: Float64Array
PQCSVFile: Union[AnyStr, List[AnyStr]]
MemoryMapping: bool
Interpolation: Union[AnyStr, int, enums.LoadShapeInterpolation, List[AnyStr], List[int], List[enums.LoadShapeInterpolation], Int32Array]
Like: AnyStr
class ILoadShape(IDSSObj, LoadShapeBatch):
__slots__ = IDSSObj._extra_slots
def __init__(self, iobj):
IDSSObj.__init__(self, iobj, LoadShape, LoadShapeBatch)
LoadShapeBatch.__init__(self, self._api_util, sync_cls_idx=LoadShape._cls_idx)
if TYPE_CHECKING:
def __getitem__(self, name_or_idx: Union[AnyStr, int]) -> LoadShape:
return self.find(name_or_idx)
def batch(self, **kwargs) -> LoadShapeBatch: #TODO: add annotation to kwargs (specialized typed dict)
"""
Creates a new batch handler of (existing) LoadShape objects
"""
return self._batch_cls(self._api_util, **kwargs)
def __iter__(self) -> Iterator[LoadShape]:
yield from LoadShapeBatch.__iter__(self)
def new(self, name: AnyStr, *, begin_edit: Optional[bool] = None, activate=False, **kwargs: Unpack[LoadShapeProperties]) -> LoadShape:
"""
Creates a new LoadShape.
:param name: The object's name is a required positional argument.
:param activate: Activation (setting `activate` to true) is useful for integration with the classic API, and some internal OpenDSS commands.
If you interact with this object only via the Alt API, no need to activate it (due to performance costs).
:param begin_edit: This controls how the edit context is left after the object creation:
- `True`: The object will be left in the edit state, requiring an `end_edit` call or equivalent.
- `False`: No edit context is started.
- `None`: If no properties are passed as keyword arguments, the object will be left in the edit state (assumes the user will fill the properties from Python attributes). Otherwise, the internal edit context will be finalized.
:param **kwargs: Pass keyword arguments equivalent to the DSS properties of the object.
:return: Returns the new DSS object, wrapped in Python.
Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.
"""
return self._new(name, begin_edit=begin_edit, activate=activate, props=kwargs)
def batch_new(self, names: Optional[List[AnyStr]] = None, *, df = None, count: Optional[int] = None, begin_edit: Optional[bool] = None, **kwargs: Unpack[LoadShapeBatchProperties]) -> LoadShapeBatch:
"""
Creates a new batch of LoadShape objects
Either `names`, `count` or `df` is required.
:param begin_edit: The argument `begin_edit` indicates if the user want to leave the elements in the edit state, and requires a call to `end_edit()` or equivalent. The default `begin_edit` is set to `None`. With `None`, the behavior will be adjusted according the default of how the batch is created.
:param **kwargs: Pass keyword arguments equivalent to the DSS properties of the object.
:param names: When using a list of names, each new object will match the names from this list. `begin_edit` defaults to `True` if no arguments for properties were passed, `False` otherwise.
:param count: When using `count`, new objects will be created with based on a random prefix, with an increasing integer up to `count`. `begin_edit` defaults to `True` if no arguments for properties were passed, `False` otherwise.
:param df: Currently **EXPERIMENTAL AND LIMITED**, tries to get the columns from a dataframe to populate the names and the DSS properties. `begin_edit` defaults to `False`.
:return: Returns the new batch of DSS objects, wrapped in Python.
Note that, to make it easier for new users where the edit context might not be too relevant, AltDSS automatically opens/closes edit contexts for single properties if the object is not in the edit state already.
"""
return self._batch_new_aux(names=names, df=df, count=count, begin_edit=begin_edit, props=kwargs)