Skip to content

Latest commit

 

History

History
 
 

hsigmoid

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hsigmoid加速词向量训练

背景介绍

在自然语言处理领域中,传统做法通常使用one-hot向量来表示词,比如词典为['我', '你', '喜欢'],可以用[1,0,0]、[0,1,0]和[0,0,1]这三个向量分别表示'我'、'你'和'喜欢'。这种表示方式比较简洁,但是当词表很大时,容易产生维度爆炸问题;而且任意两个词的向量是正交的,向量包含的信息有限。为了避免或减轻one-hot表示的缺点,目前通常使用词向量来取代one-hot表示,词向量也就是word embedding,即使用一个低维稠密的实向量取代高维稀疏的one-hot向量。训练词向量的方法有很多种,神经网络模型是其中之一,包括CBOW、Skip-gram等,这些模型本质上都是一个分类模型,当词表较大即类别较多时,传统的softmax将非常消耗时间。PaddlePaddle提供了Hsigmoid Layer、NCE Layer,来加速模型的训练过程。本文主要介绍如何使用Hsigmoid Layer来加速训练,词向量相关内容请查阅PaddlePaddle Book中的词向量章节

Hsigmoid Layer

Hsigmoid Layer引用自论文[1],Hsigmoid指Hierarchical-sigmoid,原理是通过构建一个分类二叉树来降低计算复杂度,二叉树中每个叶子节点代表一个类别,每个非叶子节点代表一个二类别分类器。例如我们一共有4个类别分别是0、1、2、3,softmax会分别计算4个类别的得分,然后归一化得到概率。当类别数很多时,计算每个类别的概率非常耗时,Hsigmoid Layer会根据类别数构建一个平衡二叉树,如下:


图1. (a)为平衡二叉树,(b)为根节点到类别1的路径

二叉树中每个非叶子节点是一个二类别分类器(sigmoid),如果类别是0,则取左子节点继续分类判断,反之取右子节点,直至达到叶节点。按照这种方式,每个类别均对应一条路径,例如从root到类别1的路径编码为0、1。训练阶段我们按照真实类别对应的路径,依次计算对应分类器的损失,然后综合所有损失得到最终损失。预测阶段,模型会输出各个非叶节点分类器的概率,我们可以根据概率获取路径编码,然后遍历路径编码就可以得到最终预测类别。传统softmax的计算复杂度为N(N为词典大小),Hsigmoid可以将复杂度降至log(N),详细理论细节可参照论文[1]。

数据准备

PTB数据

本文采用Penn Treebank (PTB)数据集(Tomas Mikolov预处理版本),共包含train、valid和test三个文件。其中使用train作为训练数据,valid作为测试数据。本文训练的是5-gram模型,即用每条数据的前4个词来预测第5个词。PaddlePaddle提供了对应PTB数据集的python包paddle.dataset.imikolov ,自动做数据的下载与预处理。预处理会把数据集中的每一句话前后加上开始符号<s>以及结束符号<e>,然后依据窗口大小(本文为5),从头到尾每次向右滑动窗口并生成一条数据。如"I have a dream that one day"可以生成<s> I have a dream、I have a dream that、have a dream that one、a dream that one day、dream that one day <e>,PaddlePaddle会把词转换成id数据作为预处理的输出。

自定义数据

用户可以使用自己的数据集训练模型,自定义数据集最关键的地方是实现reader接口做数据处理,reader需要产生一个迭代器,迭代器负责解析文件中的每一行数据,返回一个python list,例如[1, 2, 3, 4, 5],分别是第一个到第四个词在字典中的id,PaddlePaddle会进一步将该list转化成paddle.data_type.inter_value类型作为data layer的输入,一个封装样例如下:

def reader_creator(filename, word_dict, n):
    def reader():
        with open(filename) as f:
            UNK = word_dict['<unk>']
            for l in f:
                l = ['<s>'] + l.strip().split() + ['<e>']
                if len(l) >= n:
                    l = [word_dict.get(w, UNK) for w in l]
                    for i in range(n, len(l) + 1):
                        yield tuple(l[i - n:i])
    return reader


def train_data(filename, word_dict, n):
    """
    Reader interface for training data.

    It returns a reader creator, each sample in the reader is a word ID tuple.

    :param filename: path of data file
    :type filename: str
    :param word_dict: word dictionary
    :type word_dict: dict
    :param n: sliding window size
    :type n: int
    """
    return reader_creator(filename, word_dict, n)

网络结构

本文通过训练N-gram语言模型来获得词向量,具体地使用前4个词来预测当前词。网络输入为词在字典中的id,然后查询词向量词表获取词向量,接着拼接4个词的词向量,然后接入一个全连接隐层,最后是Hsigmoid层。详细网络结构见图2:


图2. 网络配置结构

代码实现如下:

def ngram_lm(hidden_size, embed_size, dict_size, gram_num=4, is_train=True):
    emb_layers = []
    embed_param_attr = paddle.attr.Param(
        name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0)
    for i in range(gram_num):
        word = paddle.layer.data(
            name="__word%02d__" % (i),
            type=paddle.data_type.integer_value(dict_size))
        emb_layers.append(
            paddle.layer.embedding(
                input=word, size=embed_size, param_attr=embed_param_attr))

    target_word = paddle.layer.data(
        name="__target_word__", type=paddle.data_type.integer_value(dict_size))

    embed_context = paddle.layer.concat(input=emb_layers)

    hidden_layer = paddle.layer.fc(
        input=embed_context,
        size=hidden_size,
        act=paddle.activation.Sigmoid(),
        layer_attr=paddle.attr.Extra(drop_rate=0.5),
        bias_attr=paddle.attr.Param(learning_rate=2),
        param_attr=paddle.attr.Param(
            initial_std=1. / math.sqrt(embed_size * 8), learning_rate=1))

    if is_train == True:
        cost = paddle.layer.hsigmoid(
            input=hidden_layer,
            label=target_word,
            num_classes=dict_size,
            param_attr=paddle.attr.Param(name="sigmoid_w"),
            bias_attr=paddle.attr.Param(name="sigmoid_b"))
        return cost
    else:
        prediction = paddle.layer.fc(
            size=dict_size - 1,
            input=hidden_layer,
            act=paddle.activation.Sigmoid(),
            bias_attr=paddle.attr.Param(name="sigmoid_b"),
            param_attr=paddle.attr.Param(name="sigmoid_w"))
        return prediction

需要注意,在预测阶段,我们需要对hsigmoid参数做一次转置,这里输出的类别数为词典大小减1,对应非叶节点的数量。

训练阶段

训练比较简单,直接运行python train.py。程序第一次运行会检测用户缓存文件夹中是否包含imikolov数据集,如果未包含,则自动下载。运行过程中,每100个iteration会打印模型训练信息,主要包含训练损失和测试损失,每个pass会保存一次模型。

预测阶段

预测时,直接运行python infer.py,程序会首先load模型,然后按照batch方式进行预测,并打印预测结果。预测阶段最重要的就是根据概率得到编码路径,然后遍历路径获取最终的预测类别,这部分逻辑如下:

def decode_res(infer_res, dict_size):
    """
    Inferring probabilities are orginized as a complete binary tree.
    The actual labels are leaves (indices are counted from class number).
    This function travels paths decoded from inferring results.
    If the probability >0.5 then go to right child, otherwise go to left child.

    param infer_res: inferring result
    param dict_size: class number
    return predict_lbls: actual class
    """
    predict_lbls = []
    infer_res = infer_res > 0.5
    for i, probs in enumerate(infer_res):
        idx = 0
        result = 1
        while idx < len(probs):
            result <<= 1
            if probs[idx]:
                result |= 1
            if probs[idx]:
                idx = idx * 2 + 2  # right child
            else:
                idx = idx * 2 + 1  # left child

        predict_lbl = result - dict_size
        predict_lbls.append(predict_lbl)
    return predict_lbls

预测程序的输入数据格式与训练阶段相同,如have a dream that one,程序会根据have a dream that生成一组概率,通过对概率解码生成预测词,one作为真实词,方便评估。解码函数的输入是一个batch样本的预测概率以及词表的大小,里面的循环是对每条样本的输出概率进行解码,解码方式就是按照左0右1的准则,不断遍历路径,直至到达叶子节点。需要注意的是,本文选用的数据集需要较长的时间训练才能得到较好的结果,预测程序选用第一轮的模型,仅为展示方便,学习效果不能保证。

参考文献

  1. Morin, F., & Bengio, Y. (2005, January). Hierarchical Probabilistic Neural Network Language Model. In Aistats (Vol. 5, pp. 246-252).