forked from cosmos/cosmos-sdk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathante.go
393 lines (326 loc) · 12.6 KB
/
ante.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
package auth
import (
"bytes"
"encoding/hex"
"fmt"
"time"
"github.com/tendermint/tendermint/crypto/ed25519"
"github.com/tendermint/tendermint/crypto"
"github.com/tendermint/tendermint/crypto/multisig"
"github.com/tendermint/tendermint/crypto/secp256k1"
"github.com/cosmos/cosmos-sdk/codec"
sdk "github.com/cosmos/cosmos-sdk/types"
)
var (
// simulation signature values used to estimate gas consumption
simSecp256k1Pubkey secp256k1.PubKeySecp256k1
simSecp256k1Sig [64]byte
)
func init() {
// This decodes a valid hex string into a sepc256k1Pubkey for use in transaction simulation
bz, _ := hex.DecodeString("035AD6810A47F073553FF30D2FCC7E0D3B1C0B74B61A1AAA2582344037151E143A")
copy(simSecp256k1Pubkey[:], bz)
}
// SignatureVerificationGasConsumer is the type of function that is used to both consume gas when verifying signatures
// and also to accept or reject different types of PubKey's. This is where apps can define their own PubKey types.
type SignatureVerificationGasConsumer = func(meter sdk.GasMeter, sig []byte, pubkey crypto.PubKey, params Params) sdk.Result
// NewAnteHandler returns an AnteHandler that checks and increments sequence
// numbers, checks signatures & account numbers, and deducts fees from the first
// signer.
func NewAnteHandler(ak AccountKeeper, fck FeeCollectionKeeper, sigGasConsumer SignatureVerificationGasConsumer) sdk.AnteHandler {
return func(
ctx sdk.Context, tx sdk.Tx, simulate bool,
) (newCtx sdk.Context, res sdk.Result, abort bool) {
// all transactions must be of type auth.StdTx
stdTx, ok := tx.(StdTx)
if !ok {
// Set a gas meter with limit 0 as to prevent an infinite gas meter attack
// during runTx.
newCtx = SetGasMeter(simulate, ctx, 0)
return newCtx, sdk.ErrInternal("tx must be StdTx").Result(), true
}
params := ak.GetParams(ctx)
// Ensure that the provided fees meet a minimum threshold for the validator,
// if this is a CheckTx. This is only for local mempool purposes, and thus
// is only ran on check tx.
if ctx.IsCheckTx() && !simulate {
res := EnsureSufficientMempoolFees(ctx, stdTx.Fee)
if !res.IsOK() {
return newCtx, res, true
}
}
newCtx = SetGasMeter(simulate, ctx, stdTx.Fee.Gas)
// AnteHandlers must have their own defer/recover in order for the BaseApp
// to know how much gas was used! This is because the GasMeter is created in
// the AnteHandler, but if it panics the context won't be set properly in
// runTx's recover call.
defer func() {
if r := recover(); r != nil {
switch rType := r.(type) {
case sdk.ErrorOutOfGas:
log := fmt.Sprintf(
"out of gas in location: %v; gasWanted: %d, gasUsed: %d",
rType.Descriptor, stdTx.Fee.Gas, newCtx.GasMeter().GasConsumed(),
)
res = sdk.ErrOutOfGas(log).Result()
res.GasWanted = stdTx.Fee.Gas
res.GasUsed = newCtx.GasMeter().GasConsumed()
abort = true
default:
panic(r)
}
}
}()
if err := tx.ValidateBasic(); err != nil {
return newCtx, err.Result(), true
}
newCtx.GasMeter().ConsumeGas(params.TxSizeCostPerByte*sdk.Gas(len(newCtx.TxBytes())), "txSize")
if res := ValidateMemo(stdTx, params); !res.IsOK() {
return newCtx, res, true
}
// stdSigs contains the sequence number, account number, and signatures.
// When simulating, this would just be a 0-length slice.
signerAddrs := stdTx.GetSigners()
signerAccs := make([]Account, len(signerAddrs))
isGenesis := ctx.BlockHeight() == 0
// fetch first signer, who's going to pay the fees
signerAccs[0], res = GetSignerAcc(newCtx, ak, signerAddrs[0])
if !res.IsOK() {
return newCtx, res, true
}
if !stdTx.Fee.Amount.IsZero() {
signerAccs[0], res = DeductFees(ctx.BlockHeader().Time, signerAccs[0], stdTx.Fee)
if !res.IsOK() {
return newCtx, res, true
}
fck.AddCollectedFees(newCtx, stdTx.Fee.Amount)
}
// stdSigs contains the sequence number, account number, and signatures.
// When simulating, this would just be a 0-length slice.
stdSigs := stdTx.GetSignatures()
for i := 0; i < len(stdSigs); i++ {
// skip the fee payer, account is cached and fees were deducted already
if i != 0 {
signerAccs[i], res = GetSignerAcc(newCtx, ak, signerAddrs[i])
if !res.IsOK() {
return newCtx, res, true
}
}
// check signature, return account with incremented nonce
signBytes := GetSignBytes(newCtx.ChainID(), stdTx, signerAccs[i], isGenesis)
signerAccs[i], res = processSig(newCtx, signerAccs[i], stdSigs[i], signBytes, simulate, params, sigGasConsumer)
if !res.IsOK() {
return newCtx, res, true
}
ak.SetAccount(newCtx, signerAccs[i])
}
// TODO: tx tags (?)
return newCtx, sdk.Result{GasWanted: stdTx.Fee.Gas}, false // continue...
}
}
// GetSignerAcc returns an account for a given address that is expected to sign
// a transaction.
func GetSignerAcc(ctx sdk.Context, ak AccountKeeper, addr sdk.AccAddress) (Account, sdk.Result) {
if acc := ak.GetAccount(ctx, addr); acc != nil {
return acc, sdk.Result{}
}
return nil, sdk.ErrUnknownAddress(fmt.Sprintf("account %s does not exist", addr)).Result()
}
// ValidateMemo validates the memo size.
func ValidateMemo(stdTx StdTx, params Params) sdk.Result {
memoLength := len(stdTx.GetMemo())
if uint64(memoLength) > params.MaxMemoCharacters {
return sdk.ErrMemoTooLarge(
fmt.Sprintf(
"maximum number of characters is %d but received %d characters",
params.MaxMemoCharacters, memoLength,
),
).Result()
}
return sdk.Result{}
}
// verify the signature and increment the sequence. If the account doesn't have
// a pubkey, set it.
func processSig(
ctx sdk.Context, acc Account, sig StdSignature, signBytes []byte, simulate bool, params Params,
sigGasConsumer SignatureVerificationGasConsumer,
) (updatedAcc Account, res sdk.Result) {
pubKey, res := ProcessPubKey(acc, sig, simulate)
if !res.IsOK() {
return nil, res
}
err := acc.SetPubKey(pubKey)
if err != nil {
return nil, sdk.ErrInternal("setting PubKey on signer's account").Result()
}
if simulate {
// Simulated txs should not contain a signature and are not required to
// contain a pubkey, so we must account for tx size of including a
// StdSignature (Amino encoding) and simulate gas consumption
// (assuming a SECP256k1 simulation key).
consumeSimSigGas(ctx.GasMeter(), pubKey, sig, params)
}
if res := sigGasConsumer(ctx.GasMeter(), sig.Signature, pubKey, params); !res.IsOK() {
return nil, res
}
if !simulate && !pubKey.VerifyBytes(signBytes, sig.Signature) {
return nil, sdk.ErrUnauthorized("signature verification failed").Result()
}
if err := acc.SetSequence(acc.GetSequence() + 1); err != nil {
panic(err)
}
return acc, res
}
func consumeSimSigGas(gasmeter sdk.GasMeter, pubkey crypto.PubKey, sig StdSignature, params Params) {
simSig := StdSignature{PubKey: pubkey}
if len(sig.Signature) == 0 {
simSig.Signature = simSecp256k1Sig[:]
}
sigBz := msgCdc.MustMarshalBinaryLengthPrefixed(simSig)
cost := sdk.Gas(len(sigBz) + 6)
// If the pubkey is a multi-signature pubkey, then we estimate for the maximum
// number of signers.
if _, ok := pubkey.(multisig.PubKeyMultisigThreshold); ok {
cost *= params.TxSigLimit
}
gasmeter.ConsumeGas(params.TxSizeCostPerByte*cost, "txSize")
}
// ProcessPubKey verifies that the given account address matches that of the
// StdSignature. In addition, it will set the public key of the account if it
// has not been set.
func ProcessPubKey(acc Account, sig StdSignature, simulate bool) (crypto.PubKey, sdk.Result) {
// If pubkey is not known for account, set it from the StdSignature.
pubKey := acc.GetPubKey()
if simulate {
// In simulate mode the transaction comes with no signatures, thus if the
// account's pubkey is nil, both signature verification and gasKVStore.Set()
// shall consume the largest amount, i.e. it takes more gas to verify
// secp256k1 keys than ed25519 ones.
if pubKey == nil {
return simSecp256k1Pubkey, sdk.Result{}
}
return pubKey, sdk.Result{}
}
if pubKey == nil {
pubKey = sig.PubKey
if pubKey == nil {
return nil, sdk.ErrInvalidPubKey("PubKey not found").Result()
}
if !bytes.Equal(pubKey.Address(), acc.GetAddress()) {
return nil, sdk.ErrInvalidPubKey(
fmt.Sprintf("PubKey does not match Signer address %s", acc.GetAddress())).Result()
}
}
return pubKey, sdk.Result{}
}
// DefaultSigVerificationGasConsumer is the default implementation of SignatureVerificationGasConsumer. It consumes gas
// for signature verification based upon the public key type. The cost is fetched from the given params and is matched
// by the concrete type.
func DefaultSigVerificationGasConsumer(
meter sdk.GasMeter, sig []byte, pubkey crypto.PubKey, params Params,
) sdk.Result {
switch pubkey := pubkey.(type) {
case ed25519.PubKeyEd25519:
meter.ConsumeGas(params.SigVerifyCostED25519, "ante verify: ed25519")
return sdk.ErrInvalidPubKey("ED25519 public keys are unsupported").Result()
case secp256k1.PubKeySecp256k1:
meter.ConsumeGas(params.SigVerifyCostSecp256k1, "ante verify: secp256k1")
return sdk.Result{}
case multisig.PubKeyMultisigThreshold:
var multisignature multisig.Multisignature
codec.Cdc.MustUnmarshalBinaryBare(sig, &multisignature)
consumeMultisignatureVerificationGas(meter, multisignature, pubkey, params)
return sdk.Result{}
default:
return sdk.ErrInvalidPubKey(fmt.Sprintf("unrecognized public key type: %T", pubkey)).Result()
}
}
func consumeMultisignatureVerificationGas(meter sdk.GasMeter,
sig multisig.Multisignature, pubkey multisig.PubKeyMultisigThreshold,
params Params) {
size := sig.BitArray.Size()
sigIndex := 0
for i := 0; i < size; i++ {
if sig.BitArray.GetIndex(i) {
DefaultSigVerificationGasConsumer(meter, sig.Sigs[sigIndex], pubkey.PubKeys[i], params)
sigIndex++
}
}
}
// DeductFees deducts fees from the given account.
//
// NOTE: We could use the CoinKeeper (in addition to the AccountKeeper, because
// the CoinKeeper doesn't give us accounts), but it seems easier to do this.
func DeductFees(blockTime time.Time, acc Account, fee StdFee) (Account, sdk.Result) {
coins := acc.GetCoins()
feeAmount := fee.Amount
if !feeAmount.IsValid() {
return nil, sdk.ErrInsufficientFee(fmt.Sprintf("invalid fee amount: %s", feeAmount)).Result()
}
// get the resulting coins deducting the fees
newCoins, ok := coins.SafeSub(feeAmount)
if ok {
return nil, sdk.ErrInsufficientFunds(
fmt.Sprintf("insufficient funds to pay for fees; %s < %s", coins, feeAmount),
).Result()
}
// Validate the account has enough "spendable" coins as this will cover cases
// such as vesting accounts.
spendableCoins := acc.SpendableCoins(blockTime)
if _, hasNeg := spendableCoins.SafeSub(feeAmount); hasNeg {
return nil, sdk.ErrInsufficientFunds(
fmt.Sprintf("insufficient funds to pay for fees; %s < %s", spendableCoins, feeAmount),
).Result()
}
if err := acc.SetCoins(newCoins); err != nil {
return nil, sdk.ErrInternal(err.Error()).Result()
}
return acc, sdk.Result{}
}
// EnsureSufficientMempoolFees verifies that the given transaction has supplied
// enough fees to cover a proposer's minimum fees. A result object is returned
// indicating success or failure.
//
// Contract: This should only be called during CheckTx as it cannot be part of
// consensus.
func EnsureSufficientMempoolFees(ctx sdk.Context, stdFee StdFee) sdk.Result {
minGasPrices := ctx.MinGasPrices()
if !minGasPrices.IsZero() {
requiredFees := make(sdk.Coins, len(minGasPrices))
// Determine the required fees by multiplying each required minimum gas
// price by the gas limit, where fee = ceil(minGasPrice * gasLimit).
glDec := sdk.NewDec(int64(stdFee.Gas))
for i, gp := range minGasPrices {
fee := gp.Amount.Mul(glDec)
requiredFees[i] = sdk.NewCoin(gp.Denom, fee.Ceil().RoundInt())
}
if !stdFee.Amount.IsAnyGTE(requiredFees) {
return sdk.ErrInsufficientFee(
fmt.Sprintf(
"insufficient fees; got: %q required: %q", stdFee.Amount, requiredFees,
),
).Result()
}
}
return sdk.Result{}
}
// SetGasMeter returns a new context with a gas meter set from a given context.
func SetGasMeter(simulate bool, ctx sdk.Context, gasLimit uint64) sdk.Context {
// In various cases such as simulation and during the genesis block, we do not
// meter any gas utilization.
if simulate || ctx.BlockHeight() == 0 {
return ctx.WithGasMeter(sdk.NewInfiniteGasMeter())
}
return ctx.WithGasMeter(sdk.NewGasMeter(gasLimit))
}
// GetSignBytes returns a slice of bytes to sign over for a given transaction
// and an account.
func GetSignBytes(chainID string, stdTx StdTx, acc Account, genesis bool) []byte {
var accNum uint64
if !genesis {
accNum = acc.GetAccountNumber()
}
return StdSignBytes(
chainID, accNum, acc.GetSequence(), stdTx.Fee, stdTx.Msgs, stdTx.Memo,
)
}