forked from andreacorbellini/ecc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverifyrandom.py
executable file
·239 lines (213 loc) · 9.44 KB
/
verifyrandom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/env python3
import collections
import hashlib
class VerificationFailed(Exception):
pass
EllipticCurve = collections.namedtuple('EllipticCurve', 'seed p a b')
# All the following curves except the last one were taken from the OpenSSL
# source code (crypto/ec/ec_curve.c). The last four are fake curves that should
# not pass seed validation.
curves = {
'prime192v1': EllipticCurve(
seed=0x3045ae6fc8422f64ed579528d38120eae12196d5,
p=0xfffffffffffffffffffffffffffffffeffffffffffffffff,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffc,
b=0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1,
),
'secp224r1': EllipticCurve(
seed=0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5,
p=0xffffffffffffffffffffffffffffffff000000000000000000000001,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffffffffffe,
b=0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4,
),
'secp384r1': EllipticCurve(
seed=0xa335926aa319a27a1d00896a6773a4827acdac73,
p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff,
a=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffc,
b=0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef,
),
'secp521r1': EllipticCurve(
seed=0xd09e8800291cb85396cc6717393284aaa0da64ba,
p=0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff,
a=0x01fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc,
b=0x0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00,
),
'prime192v2': EllipticCurve(
seed=0x31a92ee2029fd10d901b113e990710f0d21ac6b6,
p=0xfffffffffffffffffffffffffffffffeffffffffffffffff,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffc,
b=0xcc22d6dfb95c6b25e49c0d6364a4e5980c393aa21668d953,
),
'prime192v3': EllipticCurve(
seed=0xc469684435deb378c4b65ca9591e2a5763059a2e,
p=0xfffffffffffffffffffffffffffffffeffffffffffffffff,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffc,
b=0x22123dc2395a05caa7423daeccc94760a7d462256bd56916,
),
'prime239v1': EllipticCurve(
seed=0xe43bb460f0b80cc0c0b075798e948060f8321b7d,
p=0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff,
a=0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc,
b=0x6b016c3bdcf18941d0d654921475ca71a9db2fb27d1d37796185c2942c0a,
),
'prime239v2': EllipticCurve(
seed=0xe8b4011604095303ca3b8099982be09fcb9ae616,
p=0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff,
a=0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc,
b=0x617fab6832576cbbfed50d99f0249c3fee58b94ba0038c7ae84c8c832f2c,
),
'prime239v3': EllipticCurve(
seed=0x7d7374168ffe3471b60a857686a19475d3bfa2ff,
p=0x7fffffffffffffffffffffff7fffffffffff8000000000007fffffffffff,
a=0x7fffffffffffffffffffffff7fffffffffff8000000000007ffffffffffc,
b=0x255705fa2a306654b1f4cb03d6a750a30c250102d4988717d9ba15ab6d3e,
),
'prime256v1': EllipticCurve(
seed=0xc49d360886e704936a6678e1139d26b7819f7e90,
p=0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff,
a=0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc,
b=0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b,
),
'secp112r1': EllipticCurve(
seed=0x00f50b028e4d696e676875615175290472783fb1,
p=0xdb7c2abf62e35e668076bead208b,
a=0xdb7c2abf62e35e668076bead2088,
b=0x659ef8ba043916eede8911702b22,
),
'secp112r2': EllipticCurve(
seed=0x002757a1114d696e6768756151755316c05e0bd4,
p=0xdb7c2abf62e35e668076bead208b,
a=0x6127c24c05f38a0aaaf65c0ef02c,
b=0x51def1815db5ed74fcc34c85d709,
),
'secp128r1': EllipticCurve(
seed=0x000e0d4d696e6768756151750cc03a4473d03679,
p=0xfffffffdffffffffffffffffffffffff,
a=0xfffffffdfffffffffffffffffffffffc,
b=0xe87579c11079f43dd824993c2cee5ed3,
),
'secp128r2': EllipticCurve(
seed=0x004d696e67687561517512d8f03431fce63b88f4,
p=0xfffffffdffffffffffffffffffffffff,
a=0xd6031998d1b3bbfebf59cc9bbff9aee1,
b=0x5eeefca380d02919dc2c6558bb6d8a5d,
),
'secp160r1': EllipticCurve(
seed=0x1053cde42c14d696e67687561517533bf3f83345,
p=0x00ffffffffffffffffffffffffffffffff7fffffff,
a=0x00ffffffffffffffffffffffffffffffff7ffffffc,
b=0x001c97befc54bd7a8b65acf89f81d4d4adc565fa45,
),
'secp160r2': EllipticCurve(
seed=0xb99b99b099b323e02709a4d696e6768756151751,
p=0x00fffffffffffffffffffffffffffffffeffffac73,
a=0x00fffffffffffffffffffffffffffffffeffffac70,
b=0x00b4e134d3fb59eb8bab57274904664d5af50388ba,
),
# This is prime192v1 with a wrong value for seed.
'wrong192v1': EllipticCurve(
seed=0x123,
p=0xfffffffffffffffffffffffffffffffeffffffffffffffff,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffc,
b=0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1,
),
# This is prime192v1 with a wrong value for p.
'wrong192v2': EllipticCurve(
seed=0x3045ae6fc8422f64ed579528d38120eae12196d5,
p=0x123,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffc,
b=0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1,
),
# This is prime192v1 with a wrong value for a.
'wrong192v3': EllipticCurve(
seed=0x3045ae6fc8422f64ed579528d38120eae12196d5,
p=0xfffffffffffffffffffffffffffffffeffffffffffffffff,
a=0x123,
b=0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1,
),
# This is prime192v1 with a wrong value for b.
'wrong192v4': EllipticCurve(
seed=0x3045ae6fc8422f64ed579528d38120eae12196d5,
p=0xfffffffffffffffffffffffffffffffeffffffffffffffff,
a=0xfffffffffffffffffffffffffffffffefffffffffffffffc,
b=0x123,
),
}
def verify_curve(curve):
"""
Verifies whether the a and b parameters of the given curve were generated
from the seed.
Raises a VerificationFailed exception in case the verification fails.
"""
# What follows is the implementation of the verification algorithm
# described in "The Elliptic Curve Digital Signature Algorithm (ECDSA)",
# from Certicom. There just a few difference between the original algorithm
# and the implementation:
#
# * a few variable names have been changed for the sake of clarity;
# * the document from Certicom allows arbritrary seeds with bit length
# >= 160; here we only care about seeds that are exactly 160-bit long.
if curve.seed.bit_length() > 160:
raise VerificationFailed('seed too long')
seed_bytes = curve.seed.to_bytes(length=160 // 8, byteorder='big')
# Define t, s and v as specified on the document.
t = curve.p.bit_length()
s = (t - 1) // 160
v = t - 160 * s
# 1. Compute h = SHA-1(seed_bytes) and let c0 denote the bit string of
# length v bits obtained by taking the v rightmost bits of h.
h = hashlib.sha1(seed_bytes).digest()
h = int.from_bytes(h, byteorder='big')
c0 = h & ((1 << v) - 1)
# 2. Let w[0] denote the bit string of length v bits obtained by setting
# the leftmost bit of c0 to 0.
#
# Note: here we use 160 bit instead of v bits, as required by the document.
# We do so to make the code easier, and because it does not make any
# difference (see the step 6).
w0 = c0 & ((1 << v - 1) - 1)
w = [w0.to_bytes(length=160 // 8, byteorder='big')]
# 3. Let z be the integer whose binary expansion is given by 160-bit string
# seed_bytes.
z = curve.seed
# 4. For i from 1 to s do:
for i in range(1, s + 1):
# 4.1 Let s_i be 160-bit string which is the binary expansion of the
# integer (z + i) % (2 ** g).
z_i = ((z + i) % (2 ** 160))
s_i = z_i.to_bytes(length=160 // 8, byteorder='big')
# 4.2 Compute w_i = SHA-1(s_i).
w_i = hashlib.sha1(s_i).digest()
w.append(w_i)
# 5. Let w be the bit string obtained by concatenating w_0,w_1,...,w_s.
w = b''.join(w)
# 6. Let c be the integer whose integer expansion is given by w.
#
# On step 2, we said that we used a longer bit length for the first element
# of w. This is correct because the resulting c does not change: using 160
# bits instead of v bits is equivalent to add some zeroes to the left of c.
c = int.from_bytes(w, 'big')
# If b ** 2 * c == a ** 3 (mod p) then accept; otherwise reject.
if (curve.b * curve.b * c - curve.a * curve.a * curve.a) % curve.p != 0:
raise VerificationFailed('curve verification failed')
# Check all the curves defined above.
# Should produce the following output:
#
# prime192v1: ok
# prime192v2: ok
# ...
# secp384r1: ok
# secp521r1: ok
# wrong192v1: failed
# wrong192v2: failed
# wrong192v3: failed
# wrong192v4: failed
for name in sorted(curves):
curve = curves[name]
print(name, end=': ')
try:
verify_curve(curve)
except VerificationFailed:
print('failed')
else:
print('ok')