forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.py
102 lines (79 loc) · 3.53 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Linear regression using the LinearRegressor Estimator."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import numpy as np
import tensorflow as tf
import automobile_data
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
help='number of training steps')
parser.add_argument('--price_norm_factor', default=1000., type=float,
help='price normalization factor')
def main(argv):
"""Builds, trains, and evaluates the model."""
args = parser.parse_args(argv[1:])
(train_x,train_y), (test_x, test_y) = automobile_data.load_data()
train_y /= args.price_norm_factor
test_y /= args.price_norm_factor
# Provide the training input dataset.
train_input_fn = automobile_data.make_dataset(args.batch_size, train_x, train_y, True, 1000)
# Provide the validation input dataset.
test_input_fn = automobile_data.make_dataset(args.batch_size, test_x, test_y)
feature_columns = [
# "curb-weight" and "highway-mpg" are numeric columns.
tf.feature_column.numeric_column(key="curb-weight"),
tf.feature_column.numeric_column(key="highway-mpg"),
]
# Build the Estimator.
model = tf.estimator.LinearRegressor(feature_columns=feature_columns)
# Train the model.
# By default, the Estimators log output every 100 steps.
model.train(input_fn=train_input_fn, steps=args.train_steps)
# Evaluate how the model performs on data it has not yet seen.
eval_result = model.evaluate(input_fn=test_input_fn)
# The evaluation returns a Python dictionary. The "average_loss" key holds the
# Mean Squared Error (MSE).
average_loss = eval_result["average_loss"]
# Convert MSE to Root Mean Square Error (RMSE).
print("\n" + 80 * "*")
print("\nRMS error for the test set: ${:.0f}"
.format(args.price_norm_factor * average_loss**0.5))
# Run the model in prediction mode.
input_dict = {
"curb-weight": np.array([2000, 3000]),
"highway-mpg": np.array([30, 40])
}
# Provide the predict input dataset.
predict_input_fn = automobile_data.make_dataset(1, input_dict)
predict_results = model.predict(input_fn=predict_input_fn)
# Print the prediction results.
print("\nPrediction results:")
for i, prediction in enumerate(predict_results):
msg = ("Curb weight: {: 4d}lbs, "
"Highway: {: 0d}mpg, "
"Prediction: ${: 9.2f}")
msg = msg.format(input_dict["curb-weight"][i], input_dict["highway-mpg"][i],
args.price_norm_factor * prediction["predictions"][0])
print(" " + msg)
print()
if __name__ == "__main__":
# The Estimator periodically generates "INFO" logs; make these logs visible.
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main=main)