forked from kuangliu/pytorch-cifar
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_quick_lsuv_init_gamma.py
194 lines (171 loc) · 6.42 KB
/
main_quick_lsuv_init_gamma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
from torch.autograd import Variable
lr_decay = 0.1
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/gor_initckpt.t7')
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
else:
print('==> Building model..')
# net = VGG('VGG19')
net = ResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
steps_lr = [50, 75, 90]
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def adjust_learning_rate(optimizer):
for group in optimizer.param_groups:
group['lr'] = group['lr'] * lr_decay
return
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
print('Val accuracy: ' + str(acc))
if acc > best_acc:
print('Saving.., acc = ' + str(acc))
state = {
'net': net.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/resnet18_quick_gamma_lsuv_init.t7')
best_acc = acc
import torch.optim as optim
def cos_dist(anchor,positive):
"""Given batch of anchor descriptors and positive descriptors calculate distance matrix"""
return torch.bmm(anchor.unsqueeze(0), torch.t(positive).unsqueeze(0)).squeeze(0)
def gor_filter_loss(model):
loss = None
for param in model.parameters():
sh = param.shape
if len(sh) > 1:
#print sh
weights = param.view(param.size(0),-1)
dist_matrix = cos_dist(weights.t(),weights.t())**2
eye = torch.autograd.Variable(1.0 - torch.eye(dist_matrix.size(1))).cuda()
dist_without_min_on_diag = eye * dist_matrix
max_neg_a = torch.max(dist_without_min_on_diag,1)[0]#) + 1e-8)
if loss is None:
loss = max_neg_a.mean()
else:
loss+= max_neg_a.mean()
return loss
def binary_weights_init(m):
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
m.weight.data = torch.sign(m.weight.data).float()
try:
nn.init.constant(m.bias, 0)
except:
pass
return
from LSUV import LSUVinit
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
break
net = LSUVinit(net,inputs, needed_std = 1.0, std_tol = 0.1, max_attempts = 10, do_orthonorm = False, gamma = True, cuda = use_cuda)
net.train()
optimizer1 = optim.SGD(net.parameters(), lr=0.01,momentum=0.9, dampening=0.9)
for i in range(0):
optimizer1.zero_grad()
loss = gor_filter_loss(net)
if i %100 == 0:
print (loss)
loss.backward()
optimizer1.step()
for epoch in range(0,100):
train(epoch)
# update the optimizer learning rate
if epoch in steps_lr:
adjust_learning_rate(optimizer)
test(epoch)