-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
214 lines (185 loc) · 6.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import re
import math
import string
MODEL2BRACKET_IDS = {
"m2m": {
'[': [542], # , 1448],
']': [11355] # , 494]
},
'nllb': {
'[': [709], # 248415], # _[, [
']': [10109], # , 248414] # _] , ]
'(': [104],
')': [14229]
},
'mbart': {
'[': [378],
']': [10114]
}
}
BRACKET_IDS = {709, 248415, 10109, 248414}
PUNC_LIST = set(string.punctuation)
CHINESE_PUNC = '"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、 、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏'
PUNC_LIST.remove("\'")
class Candidate:
def __init__(self, text_ids, score, accumulate_scores=None):
self.text_ids = text_ids
self.score = score
self.flag = False
self.count = 0.
self.max_position = 0
self.accumulate_scores = accumulate_scores
self.search_tree = None
self.close_bracket_position = -1
self.open_bracket_position = -1
self.min_heap = []
def to_cuda(self, device):
if self.text_ids is not None:
self.text_ids = self.text_ids.to(device)
if self.score is not None:
self.score = self.score.to(device)
def update_smallest_candidate(self):
self.score = self.min_heap[0][0]
self.text_ids = self.min_heap[0][2]
self.accumulate_scores = self.min_heap[0][3]
class Node:
def __init__(self, text=None, log_prob=None, acc_log_prob=None, upperbound=None):
self.text = text
self.log_prob = log_prob
self.acc_log_prob = acc_log_prob
self.child = []
self.level = 0
self.upperbound = upperbound
def add_child_node(self, node):
self.child.append(node)
node.level = self.level + 1
def __repr__(self):
repr_str = "{} - {}: {}/{}".format(self.level, self.text, round(self.log_prob, 2), round(self.acc_log_prob, 2))
return repr_str
def print_tree(root_node):
if not root_node:
return
print(root_node)
for node in root_node.child:
print_tree(node)
def check_punctuation(text):
return text in CHINESE_PUNC or text in PUNC_LIST
def preprocess(mt, md, text, is_tokenized=False):
if not is_tokenized:
tokenized_en_text = mt.tokenize(text)
else:
tokenized_en_text = text
tmp = [md.tokenize([_]) for _ in tokenized_en_text]
return ' '.join(tmp)
def preprocess2(text, org_text, mt, md, is_tokenized=False, lang=None):
if not is_tokenized:
tokenized_en_text = mt.tokenize(text)
else:
tokenized_en_text = text
org_text = re.sub(" +", " ", org_text)
parts = [md.detokenize([_]) for _ in tokenized_en_text]
p1 = 0
tokenized_parts = []
for part in parts:
if org_text[p1:].startswith(part):
if part in PUNC_LIST:
tokenized_parts.append(f" {part} ")
else:
tokenized_parts.append(org_text[p1:p1 + len(part)])
p1 = p1 + len(part)
elif org_text[p1 + 1:].startswith(part):
if part in PUNC_LIST:
tokenized_parts.append(f" {part} ")
else:
tokenized_parts.append(org_text[p1:p1 + 1 + len(part)])
p1 = p1 + 1 + len(part)
else:
print(text)
print(org_text)
print("Fail")
break
result = ''.join(tokenized_parts)
result = re.sub(" +", " ", result)
return result.strip()
def post_process(text, org_text):
x_pointer = 0
org_x_pointer = 0
new_str = []
if org_text.strip() == '':
return org_text
while x_pointer < len(text) or org_x_pointer < len(org_text):
if org_x_pointer == len(org_text):
assert text[x_pointer] in [' ', '[', ']']
new_str.append(text[x_pointer])
x_pointer += 1
continue
if x_pointer == len(text):
new_str.append(org_text[org_x_pointer])
org_x_pointer += 1
continue
if org_text[org_x_pointer] == text[x_pointer]:
new_str.append(org_text[org_x_pointer])
x_pointer += 1
org_x_pointer += 1
else:
if text[x_pointer] == '[' or text[x_pointer] == ']':
new_str.append(text[x_pointer])
x_pointer += 1
else:
assert org_text[org_x_pointer] == ' ' or text[x_pointer] == ' ', f"\n {org_text} \n {text}"
if text[x_pointer] == ' ' and org_text[org_x_pointer] != ' ':
x_pointer += 1
elif text[x_pointer] != ' ' and org_text[org_x_pointer] == ' ':
new_str.append(org_text[org_x_pointer])
org_x_pointer += 1
return ''.join(new_str)
def tokenize_non_whitespace(template_text, tokenizer):
tmp = []
for i, token in enumerate(template_text.split(' ')):
if i == 0:
tmp.extend(tokenizer.tokenize(token))
else:
tmp1 = [_ for _ in tokenizer.tokenize(token) if _ != '▁']
tmp.extend([_.replace('▁', '') for _ in tmp1])
template_ids = [tokenizer.convert_tokens_to_ids(_) for _ in tmp]
return template_ids
def compute_number_combination(n, num_brackets, num_choices_per_bracket=2):
return math.comb(n + num_brackets, num_brackets) * (num_choices_per_bracket**num_brackets)
def sent_scoring(model, tokenizer, org_text, target_text, cuda):
input_text = f'{target_text}{tokenizer.eos_token}'
input_ids = torch.LongTensor(tokenizer.encode(input_text)).unsqueeze(0) # Batch size 1
org_input_ids = torch.LongTensor(tokenizer.encode(org_text))
tgt_length = input_ids.shape[1] - org_input_ids.shape[0]
print(tgt_length)
target_ids = input_ids.clone()
target_ids[:, :-tgt_length] = -100
print(input_ids)
print(target_ids)
if cuda:
input_ids = input_ids.to('cuda')
target_ids = target_ids.to('cuda')
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
sentence_prob = outputs.loss.item()*tgt_length
return sentence_prob
@torch.no_grad()
def enc_dec_scoring(input_ids, target_ids, model, attention_mask=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
with torch.no_grad():
outputs = model(input_ids=input_ids,
attention_mask=attention_mask,
labels=target_ids[:, 1:].contiguous())
# sentence_prob = outputs.loss.item()
labels = target_ids[:, 2:].contiguous()
logits = outputs.logits[:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
mask_lm_loss = []
for i in range(labels.shape[0]):
loss = loss_fct(logits[i].reshape(-1, model.config.vocab_size), labels[i])
length = (labels[i] != -100).sum()
loss = loss[:length]
loss = torch.cumsum(loss, dim=0)
mask_lm_loss.append(loss.cpu())
return mask_lm_loss