forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Rolling.cs
97 lines (86 loc) · 4.27 KB
/
Rolling.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using Deedle;
using MathNet.Numerics.Statistics;
using System;
using System.Collections.Generic;
using System.Linq;
namespace QuantConnect.Report
{
/// <summary>
/// Rolling window functions
/// </summary>
public static class Rolling
{
/// <summary>
/// Calculate the rolling beta with the given window size (in days)
/// </summary>
/// <param name="equityCurve">The equity curve you want to measure beta for</param>
/// <param name="benchmarkSeries">The benchmark/series you want to calculate beta with</param>
/// <param name="windowSize">Days/window to lookback</param>
/// <returns>Rolling beta</returns>
public static Series<DateTime, double> Beta(Series<DateTime, double> equityCurve, Series<DateTime, double> benchmarkSeries, int windowSize = 132)
{
var dailyReturnsSeries = equityCurve.ResampleEquivalence(date => date.Date, s => s.TotalReturns());
var benchmarkReturns = benchmarkSeries.ResampleEquivalence(date => date.Date, s => s.TotalReturns());
var returns = Frame.CreateEmpty<DateTime, string>();
returns["strategy"] = dailyReturnsSeries;
returns = returns.Join("benchmark", benchmarkReturns)
.FillMissing(Direction.Forward)
.DropSparseRows();
var correlation = returns
.Window(windowSize)
.SelectValues(x => Correlation.Pearson(x["strategy"].Values, x["benchmark"].Values));
var portfolioStandardDeviation = dailyReturnsSeries.Window(windowSize).SelectValues(s => s.StdDev());
var benchmarkStandardDeviation = benchmarkReturns.Window(windowSize).SelectValues(s => s.StdDev());
return (correlation * (portfolioStandardDeviation / benchmarkStandardDeviation))
.FillMissing(Direction.Forward)
.DropMissing();
}
/// <summary>
/// Get the rolling sharpe of the given series with a lookback of <paramref name="months"/>. The risk free rate is adjustable
/// </summary>
/// <param name="equityCurve">Equity curve to calculate rolling sharpe for</param>
/// <param name="months">Number of months to calculate the rolling period for</param>
/// <param name="riskFreeRate">Risk free rate</param>
/// <returns>Rolling sharpe ratio</returns>
public static Series<DateTime, double> Sharpe(Series<DateTime, double> equityCurve, int months, double riskFreeRate = 0.0)
{
if (equityCurve.IsEmpty)
{
return equityCurve;
}
var dailyReturns = equityCurve.ResampleEquivalence(date => date.Date, s => s.TotalReturns());
var rollingSharpeData = new List<KeyValuePair<DateTime, double>>();
var firstDate = equityCurve.FirstKey();
foreach (var date in equityCurve.Keys)
{
var nMonthsAgo = date.AddMonths(-months);
if (nMonthsAgo < firstDate)
{
continue;
}
var algoPerformanceLookback = dailyReturns.Between(nMonthsAgo, date);
rollingSharpeData.Add(
new KeyValuePair<DateTime, double>(
date,
Statistics.Statistics.SharpeRatio(algoPerformanceLookback.Values.ToList(), riskFreeRate)
)
);
}
return new Series<DateTime, double>(rollingSharpeData.Select(kvp => kvp.Key), rollingSharpeData.Select(kvp => kvp.Value));
}
}
}