-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
744 lines (649 loc) · 37.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
import os
from os.path import join as opj
import argparse
from omegaconf import OmegaConf
import datetime
from contextlib import nullcontext
from importlib import import_module
from datetime import timedelta
from einops import rearrange
import torch
import torch.distributed as dist
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from safetensors.torch import load_file
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from diffusers.optimization import get_scheduler
from tqdm import tqdm
from einops import rearrange
import torch.nn.functional as F
import torchvision.transforms as T
import numpy as np
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from magicanimate.utils.util import zero_rank_print, AverageMeter, save_videos_grid, model_load, save_args, save_config, none_filter
from magicanimate.models.unet_controlnet import UNet3DConditionModel
from magicanimate.models.controlnet import ControlNetModel
from magicanimate.models.controlnet import ControlNet3DModel
from magicanimate.models.appearance_encoder import AppearanceEncoderModel
from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
from magicanimate.pipelines.pipeline_animation import AnimationPipeline
from magicanimate.utils.videoreader import VideoReader
from utils import convert_ldm_unet_checkpoint
from magicanimate.models.channel_fixer import ChannelFixer
from magicanimate.models.custom_attention_processor import CustomAttnProcessor, CustomXFormersAttnProcessor
from datetime import timedelta
def get_controlnet_output(controlnet, noisy_l_img, timesteps, text_embeddings, video_length, motion, freeze_controlnet, use_temporal_controlnet=False):
if not freeze_controlnet:
down_block_res_samples, mid_block_res_sample = controlnet(
rearrange(noisy_l_img, "b c f h w -> (b f) c h w") if not use_temporal_controlnet else noisy_l_img,
timesteps,
encoder_hidden_states=text_embeddings.repeat_interleave(video_length, 0),
controlnet_cond=motion if use_temporal_controlnet else rearrange(motion, "b f c h w -> (b f) c h w"),
conditioning_scale=1.0,
return_dict=False
)
else:
with torch.no_grad():
noisy_l_img = torch.ones_like(noisy_l_img)
timesteps = torch.ones_like(timesteps)
text_embeddings= torch.ones_like(text_embeddings)
motion = torch.ones_like(motion)
down_block_res_samples, mid_block_res_sample = controlnet(
rearrange(noisy_l_img, "b c f h w -> (b f) c h w") if not use_temporal_controlnet else noisy_l_img,
timesteps,
encoder_hidden_states=text_embeddings.repeat_interleave(video_length, 0),
controlnet_cond=motion if use_temporal_controlnet else rearrange(motion, "b f c h w -> (b f) c h w"),
conditioning_scale=1.0,
return_dict=False
)
_down_block_res_samples = []
for down_sample in down_block_res_samples:
if not use_temporal_controlnet:
down_sample = rearrange(down_sample, "(b f) c h w -> b c f h w", f=video_length)
_down_block_res_samples.append(down_sample)
down_block_res_samples = _down_block_res_samples
return down_block_res_samples, mid_block_res_sample
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/train/reimple_first_stage.yaml")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--motion_type", type=str, default="dwpose", choices=["densepose_rgb", "dwpose"])
parser.add_argument("--is_second_stage", action="store_true")
parser.add_argument("--freeze_controlnet", action="store_true")
parser.add_argument("--freeze_ae", action="store_true")
parser.add_argument("--use_HAP", action="store_true")
parser.add_argument("--use_augchibi", action="store_true")
parser.add_argument("--ref_aug", nargs="+", type=str, choices=["resize", "randomresize", "centercrop", "randomcrop", "blur"])
parser.add_argument("--motion_aug", nargs="+", type=str, choices=["resize", "randomresize", "centercrop", "randomcrop", "blur"])
parser.add_argument("--image_dataset_name", type=str, default="TikTokImageDataset2")
parser.add_argument("--video_dataset_name", type=str, default="TikTokVideoDataset")
parser.add_argument("--pretrained_vae_path", type=str, default=None)
parser.add_argument("--pretrained_appearance_encoder_path", type=str, default=None)
parser.add_argument("--pretrained_controlnet_path", type=str, default=None)
parser.add_argument("--pretrained_model_path", type=str, default=None)
parser.add_argument("--pretrained_unet_path", type=str, default=None)
parser.add_argument("--init_unet_lora", action="store_true")
parser.add_argument("--load_unet_lora_weight", action="store_true", help="lora weight를 load할때는 1. init lora 2. load / lora weight가 아니면 1. load 2. init lora")
parser.add_argument("--use_learnable_taumap", action="store_true")
parser.add_argument("--unet_lora_midup", action="store_true")
parser.add_argument("--unet_rank", type=int, default=16)
parser.add_argument("--ae_rank", type=int, default=16)
parser.add_argument("--use_temporal_controlnet", action="store_true")
parser.add_argument("--use_noisy_ref_img", action="store_true")
parser.add_argument("--save_name", type=str, default="dummy")
parser.add_argument("--n_epochs", type=int, default=1251)
parser.add_argument("--save_model_iter_freq", type=int, default=8750)
parser.add_argument("--validation_step", type=int, default=8750)
parser.add_argument("--n_iters", type=int, default=100000)
parser.add_argument("--size", type=int, default=None)
parser.add_argument("--data_root_dir", type=str, default="./DATA/TikTok")
parser.add_argument("--HAP_root_dir", type=str, default="./DATA/HAP/train")
parser.add_argument("--augchibi_root_dir", type=str, default="./DATA/sd_augchibi")
parser.add_argument("--save_root_dir", type=str, default="./logs")
parser.add_argument("--validation_step_lst", type=int, nargs="+", default=[10000000])
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--num_workers", type=int, default=2)
args = parser.parse_args()
args.save_dir = opj(args.save_root_dir, f"{datetime.datetime.now().strftime('%Y%m%d')}_" + args.save_name)
args.sample_save_dir = opj(args.save_dir, "samples")
args.model_save_dir = opj(args.save_dir, "models")
args.tb_save_dir = opj(args.save_dir, "tb")
args.args_save_path = opj(args.save_dir, "args.json")
args.config_save_path = opj(args.save_dir, "config.yaml")
os.makedirs(args.sample_save_dir, exist_ok=True)
os.makedirs(args.model_save_dir, exist_ok=True)
os.makedirs(args.tb_save_dir, exist_ok=True)
if args.is_second_stage:
args.validation_step_lst = [3]
args.save_model_iter_freq = 2500
args.validation_step = 2500
args.n_epochs = 90
args.n_gpus = torch.cuda.device_count()
if args.n_gpus > 1:
args.DDP = True
else:
args.DDP = False
if args.DDP:
dist.init_process_group(backend="nccl", timeout=timedelta(seconds=7200000))
args.num_processes = dist.get_world_size()
args.local_rank = int(os.environ["LOCAL_RANK"])
else:
args.num_processes = 1
args.local_rank = 0
torch.cuda.set_device(args.local_rank)
return args
def main(args):
is_main_process = args.local_rank == 0
config = OmegaConf.load(args.config)
if args.size is not None:
config.size = args.size
device = torch.device(f"cuda:{args.local_rank}")
if args.is_second_stage:
config.unet_additional_kwargs.motion_module_kwargs.use_learnable_taumap = args.use_learnable_taumap
if is_main_process:
tb_writer = SummaryWriter(args.tb_save_dir)
if args.pretrained_vae_path is not None:
zero_rank_print(f"replace vae path {config.pretrained_vae_path} to {args.pretrained_vae_path}")
config.pretrained_vae_path = args.pretrained_vae_path
if args.pretrained_model_path is not None:
zero_rank_print(f"replace sd path {config.pretrained_model_path} to {args.pretrained_model_path}")
config.pretrained_model_path = args.pretrained_model_path
if args.pretrained_controlnet_path is not None:
zero_rank_print(f"replace cnet path {config.pretrained_controlnet_path} to {args.pretrained_controlnet_path}")
config.pretrained_controlnet_path = args.pretrained_controlnet_path
zero_rank_print(f"replace {config.pretrained_controlnet_path} to {args.pretrained_controlnet_path}")
if args.pretrained_appearance_encoder_path is not None:
zero_rank_print(f"replace appearance encoder path {config.pretrained_appearance_encoder_path} to {args.pretrained_appearance_encoder_path}")
config.pretrained_appearance_encoder_path = args.pretrained_appearance_encoder_path
if not args.is_second_stage:
train_dataset = getattr(import_module("magicanimate.data.dataset"), args.image_dataset_name)(
args.data_root_dir,
sample_size=config.size,
motion_type=args.motion_type,
use_HAP=args.use_HAP,
HAP_root_dir=args.HAP_root_dir,
tau0=config.get("tau0", 0.5),
use_augchibi=args.use_augchibi,
augchibi_root_dir = args.augchibi_root_dir,
tau0_augchibi=config.get("tau0_chibi", 0.5),
ref_aug=args.ref_aug,
motion_aug=args.motion_aug,
)
else:
train_dataset = getattr(import_module("magicanimate.data.dataset"), args.video_dataset_name)(
args.data_root_dir,
sample_size=config.size,
length=config.L,
motion_type=args.motion_type,
)
if args.DDP:
train_sampler = DistributedSampler(
train_dataset,
num_replicas=args.num_processes,
rank=args.local_rank,
shuffle=True,
seed=args.seed
)
shuffle = False
else:
train_sampler = None
shuffle = True
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=shuffle,
sampler=train_sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
collate_fn=none_filter,
)
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(config.noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)
tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(config.unet_additional_kwargs))
if (args.pretrained_unet_path is not None) and (not args.load_unet_lora_weight):
from utils import convert_ldm_unet_checkpoint
renew_cp = convert_ldm_unet_checkpoint(load_file(args.pretrained_unet_path), unet.config)
unet.load_state_dict(renew_cp)
zero_rank_print(f"unet is loaded from {args.pretrained_unet_path}")
if args.use_temporal_controlnet:
zero_rank_print(f"use_temporal_controlnet True")
ccc = OmegaConf.to_container(OmegaConf.load(config.controlnet_config_path))
ccc.pop('down_block_types')
controlnet = ControlNet3DModel(
unet_use_cross_frame_attention=config.unet_additional_kwargs.unet_use_cross_frame_attention,
unet_use_temporal_attention=config.unet_additional_kwargs.unet_use_temporal_attention,
use_motion_module = True,
motion_module_type='Vanilla',
motion_module_kwargs = unet.motion_module_kwargs,
**ccc)
if config.get("motion_module", None) is not None and args.is_second_stage:
m, u = controlnet.load_state_dict(torch.load(config.motion_module, map_location="cpu"), strict=False)
print(f'temporal controlnet missing: {len(m)}, unexpected: {len(u)}')
m, u = controlnet.load_state_dict(model_load(config.pretrained_controlnet_path), strict=False)
zero_rank_print(f"ControlNet is loaded from {config.pretrained_controlnet_path}, missing: {len(m)}, unexpected: {len(u)}")
else:
controlnet = ControlNetModel.from_config(OmegaConf.to_container(OmegaConf.load(config.controlnet_config_path)))
m, u = controlnet.load_state_dict(model_load(config.pretrained_controlnet_path), strict=False)
assert len(m) == 42 or len(m) == 0, f"missing {len(m)} : there are additional missing layers except of initial layer (named controlnet_cond_embedding.) and zero conv"
zero_rank_print(f"ControlNet is loaded from {config.pretrained_controlnet_path}, missing: {len(m)}, unexpected: {len(u)}")
appearance_encoder = AppearanceEncoderModel.from_config(OmegaConf.to_container(OmegaConf.load(config.appearance_encoder_config_path)))
reference_control_writer = ReferenceAttentionControl(
appearance_encoder,
do_classifier_free_guidance=True,
mode="write",
fusion_blocks=config.fusion_blocks,
batch_size=args.batch_size,
is_train=True,
is_second_stage=args.is_second_stage,
)
reference_control_reader = ReferenceAttentionControl(
unet,
do_classifier_free_guidance=True,
mode="read",
fusion_blocks=config.fusion_blocks,
batch_size=args.batch_size,
is_train=True,
is_second_stage=args.is_second_stage
)
if config.get("motion_module", None) is not None and args.is_second_stage:
m, u = unet.load_state_dict(torch.load(config.motion_module, map_location="cpu"), strict=False)
assert len(u) == 0, f"If loading pretrained motion module, temporal layer structure must be same to the AnimateDiff!"
zero_rank_print(f"Motion module is loaded from {config.motion_module}, missing: {len(m)}, unexpected: {len(u)}")
unet_lora_module_names = [
"attn1.to_q",
"attn1.to_k",
"attn1.to_v",
"attn2.to_q",
"attn2.to_k",
"attn2.to_v"
]
if args.load_unet_lora_weight:
from peft import LoraConfig
unet.requires_grad_(False)
unet_lora_config = LoraConfig(
r=args.unet_rank,
lora_alpha=args.unet_rank,
init_lora_weights="gaussian",
target_modules=unet_lora_module_names,
)
unet.add_adapter(unet_lora_config)
zero_rank_print(f"initialize unet lora layer")
m,u = unet.load_state_dict(model_load(args.pretrained_unet_path), strict=not args.is_second_stage)
zero_rank_print(f"unet is loaded from {args.pretrained_unet_path}, missing: {len(m)}, unexpected: {len(u)}")
else:
if args.init_unet_lora:
from peft import LoraConfig
unet.requires_grad_(False)
unet_lora_config = LoraConfig(
r=args.unet_rank,
lora_alpha=args.unet_rank,
init_lora_weights="gaussian",
target_modules=unet_lora_module_names,
)
unet.add_adapter(unet_lora_config)
zero_rank_print(f"initialize unet lora layer")
if "civitai" in config.pretrained_appearance_encoder_path.lower():
renew_cp = convert_ldm_unet_checkpoint(load_file(args.pretrained_unet_path), unet.config)
m, u = appearance_encoder.load_state_dict(renew_cp, strict=False)
else:
m, u = appearance_encoder.load_state_dict(model_load(config.pretrained_appearance_encoder_path), strict=False)
zero_rank_print(f"Appearance Encoder is loaded from {config.pretrained_appearance_encoder_path}, missing: {len(m)}, unexpected: {len(u)}")
appearance_encoder.reset_final_block()
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
appearance_encoder.enable_xformers_memory_efficient_attention()
vae.to(device)
unet.to(device)
text_encoder.to(device)
controlnet.to(device)
appearance_encoder.to(device)
zero_rank_print("\n#### optimizer >>>>")
trainable_params = []
text_encoder.requires_grad_(False)
vae.requires_grad_(False)
if not args.is_second_stage:
if args.init_unet_lora:
trainable_params += list(filter(lambda p: p.requires_grad, unet.parameters()))
zero_rank_print(f"unet lora {len(list(filter(lambda p: p.requires_grad, unet.parameters())))} layers are added")
else:
zero_rank_print(f"no unet lora")
if not args.freeze_ae:
trainable_params += list(filter(lambda p: p.requires_grad, appearance_encoder.parameters()))
zero_rank_print(f"appearance encoder {len(list(filter(lambda p: p.requires_grad, appearance_encoder.parameters())))} layers are added")
else:
zero_rank_print(f"freeze appearance encoder")
if not args.freeze_controlnet:
if args.use_temporal_controlnet:
for key, param in controlnet.named_parameters():
if 'motion_modules.' in key:
param.requires_grad = False
trainable_params += list(filter(lambda p: p.requires_grad, controlnet.parameters()))
else:
trainable_params += list(controlnet.parameters())
zero_rank_print(f"controlnet {len(list(controlnet.parameters()))} layers are added")
else:
zero_rank_print(f"freeze controlnet")
else:
appearance_encoder.requires_grad_(False)
controlnet.requires_grad_(False)
unet.requires_grad_(False)
for key, param in unet.named_parameters():
if "motion_modules." in key:
param.requires_grad = True
for key, param in controlnet.named_parameters():
if "motion_modules." in key:
param.requires_grad = True
trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))
trainable_params += list(filter(lambda p: p.requires_grad, controlnet.parameters()))
zero_rank_print(f"temporal controlnet {len(list(filter(lambda p: p.requires_grad, controlnet.parameters())))} temporal layers are added")
zero_rank_print(f"unet {len(list(filter(lambda p: p.requires_grad, unet.parameters())))} temporal layers are added")
optimizer = torch.optim.AdamW(
trainable_params,
lr=config.learning_rate,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.adam_weight_decay,
eps=config.adam_epsilon
)
zero_rank_print("#### optimizer <<<<\n")
lr_scheduler = get_scheduler(
config.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=args.n_epochs * len(train_loader)
)
unet.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
appearance_encoder.enable_xformers_memory_efficient_attention()
for n, m in unet.named_modules():
if ('up_blocks' in n) and (n.endswith('attn1')):
m.processor = CustomXFormersAttnProcessor()
vae.to(device)
unet.to(device)
text_encoder.to(device)
controlnet.to(device)
appearance_encoder.to(device)
if args.DDP:
if not args.is_second_stage:
appearance_encoder = DDP(appearance_encoder, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=False)
if not args.freeze_controlnet:
controlnet = DDP(controlnet, device_ids=[args.local_rank], output_device=args.local_rank)
if args.init_unet_lora:
unet = DDP(unet, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=args.init_unet_lora)
else:
unet = DDP(unet, device_ids=[args.local_rank], output_device=args.local_rank)
validation_pipeline = AnimationPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet.module if hasattr(unet, "module") else unet,
controlnet=controlnet.module if hasattr(controlnet, "module") else controlnet,
scheduler=noise_scheduler
)
validation_pipeline.to(device)
if is_main_process:
zero_rank_print(f"**** Training ****")
zero_rank_print(f" Trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
zero_rank_print(f" Num training data : {len(train_dataset)}")
zero_rank_print(f" Epochs : {args.n_epochs}")
zero_rank_print(f" Batch size : {args.batch_size}")
zero_rank_print(f" Num processes : {args.num_processes}")
zero_rank_print(f" Total batch_size : {args.batch_size * args.num_processes}")
scaler = torch.cuda.amp.GradScaler()
global_step = 1
loss_avgmeter = AverageMeter()
save_args(args, args.args_save_path)
save_config(config, args.config_save_path)
for epoch in range(1, args.n_epochs+1):
if global_step >= args.n_iters:
break
if args.DDP:
train_loader.sampler.set_epoch(epoch)
with tqdm(train_loader, unit="iter", ncols=100) as tl:
for batch_idx, batch in enumerate(tl):
if global_step >= args.n_iters:
break
tl.set_description(f"Epoch {epoch}")
img = batch['img'].to(device) # [b f 3 512 512], -1~1
ref_img = batch["ref_img"].to(device) # [b 1 3 512 512], -1~1
motion = batch["motion"].to(device) # [b f 3 512 512], 0~1
video_length = img.shape[1]
if global_step == 1 and not(args.is_second_stage):
b,f,c,h,w = img.shape
b = min(b, 4)
tmp_img = img[:b].detach().cpu().permute(2,1,0,3,4).reshape(c,f,b*h,w).unsqueeze(0)
tmp_ref_img = ref_img[:b].detach().cpu().repeat_interleave(f, dim=1).permute(2,1,0,3,4).reshape(c,f,b*h,w).unsqueeze(0)
tmp_motion = motion[:b].detach().cpu().permute(2,1,0,3,4).reshape(c,f,b*h,w).unsqueeze(0)
tmp_img = (tmp_img + 1) / 2
tmp_ref_img = (tmp_ref_img + 1) / 2
tmp_imgs = torch.cat([tmp_ref_img, tmp_img, tmp_motion], dim=-1).squeeze().permute(1,2,0)
save_path = opj(args.sample_save_dir, "training_sanity_check.png")
Image.fromarray((tmp_imgs.numpy()*255).astype(np.uint8)).save(save_path)
with torch.no_grad():
text_inputs = tokenizer(
batch["text"],
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).input_ids.to(device)
text_embeddings = text_encoder(
text_inputs,
attention_mask=None
)[0]
with torch.no_grad():
assert ref_img.shape[1] == 1
ref_img = rearrange(ref_img, "b f c h w -> (b f) c h w")
l_ref_img = vae.encode(ref_img).latent_dist.mean * 0.18215
with torch.no_grad():
img = rearrange(img, "b f c h w -> (b f) c h w")
l_img = vae.encode(img).latent_dist
l_img = l_img.sample()
l_img = rearrange(l_img, "(b f) c h w -> b c f h w", f=video_length)
l_img = l_img * 0.18215
bs = l_img.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bs, ), device=l_img.device).long()
noise = torch.randn_like(l_img)
noisy_l_img = noise_scheduler.add_noise(l_img, noise, timesteps)
if args.use_noisy_ref_img:
ref_noise = torch.randn_like(l_ref_img)
l_ref_img = noise_scheduler.add_noise(l_ref_img, ref_noise, timesteps)
target = noise
#### input shape
# noisy_l_img : [b c f h w]
# l_ref_img : [b c h w]
# motion : [(b f) 3 H W]
# timesteps : [b]
# text_embeddings : [b 77 768]
with torch.autocast("cuda") if args.freeze_controlnet else nullcontext():
appearance_encoder(
l_ref_img,
timesteps,
encoder_hidden_states=text_embeddings,
return_dict=False
)
down_block_res_samples, mid_block_res_sample = get_controlnet_output(controlnet, noisy_l_img, timesteps, text_embeddings, video_length, motion, args.freeze_controlnet, args.use_temporal_controlnet)
reference_control_reader.update(reference_control_writer)
model_pred = unet(
noisy_l_img,
timesteps,
encoder_hidden_states=text_embeddings,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual= mid_block_res_sample if args.use_temporal_controlnet else rearrange(mid_block_res_sample, "(b f) c h w -> b c f h w", f=video_length),
return_dict=False,
)[0]
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
if is_main_process:
tb_writer.add_scalar("loss step", loss.item(), global_step)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
if not args.is_second_stage:
torch.nn.utils.clip_grad_norm_(appearance_encoder.parameters(), config.max_grad_norm)
if not args.freeze_controlnet:
torch.nn.utils.clip_grad_norm_(controlnet.parameters(), config.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.max_grad_norm)
scaler.step(optimizer)
scaler.update()to_path
reference_control_reader.clear()
reference_control_writer.clear()
loss_avgmeter.update(loss.item(), img.shape[0])
if is_main_process and (global_step % args.save_model_iter_freq == 0 or global_step in args.validation_step_lst):
if not args.is_second_stage:
to_path = opj(args.model_save_dir, f"[AppearanceEncoder]_[Epoch={epoch}]_[Iter={global_step}]_[loss={loss_avgmeter.avg:.4f}].ckpt")
torch.save(appearance_encoder.module.state_dict() if hasattr(appearance_encoder, "module") else appearance_encoder.state_dict(), to_path)
zero_rank_print(f"Save AppearanceNet to {to_path}")
if args.init_unet_lora:
to_path = opj(args.model_save_dir, f"[UNet]_[Epoch={epoch}]_[Iter={global_step}]_[loss={loss_avgmeter.avg:.4f}].ckpt")
torch.save(unet.module.state_dict() if hasattr(unet, "module") else unet.state_dict(), to_path)
zero_rank_print(f"Save UNet to {to_path}")
else:
to_path = opj(args.model_save_dir, f"[UNet]_[Epoch={epoch}]_[Iter={global_step}]_[loss={loss_avgmeter.avg:.4f}].ckpt")
torch.save(unet.module.state_dict() if hasattr(unet, "module") else unet.state_dict(), to_path)
zero_rank_print(f"Save UNet to {to_path}")
if args.use_temporal_controlnet:
to_path = opj(args.model_save_dir, f"[ControlNetT]_[Epoch={epoch}]_[Iter={global_step}]_[loss={loss_avgmeter.avg:.4f}].ckpt")
torch.save(controlnet.module.state_dict() if hasattr(controlnet, 'module') else controlnet.state_dict(), to_path)
zero_rank_print(f"Save ControlNet to {to_path}")
if global_step % args.validation_step == 0 or global_step in args.validation_step_lst:
image_transform = T.RandomResizedCrop(
size=(config.size, config.size),
scale=(1.0,1.0),
ratio=(1.0,1.0),
interpolation=T.InterpolationMode.BILINEAR,
antialias=True,
)
torch.cuda.empty_cache()
test_videos = config.video_path
source_images = config.source_image
sizes = [config.size] * len(test_videos)
steps = [config.S] * len(test_videos)
num_actual_inference_steps = config.get("num_actual_inference_steps", config.steps)
if len(source_images) % args.n_gpus == 0:
n_infer = len(source_images) // args.n_gpus
else:
n_infer = len(source_images) // args.n_gpus + 1
start_idx = int(args.local_rank * n_infer)
end_idx = start_idx + n_infer
source_images = source_images[start_idx:end_idx]
test_videos = test_videos[start_idx:end_idx]
sizes = sizes[start_idx:end_idx]
steps = steps[start_idx:end_idx]
if args.DDP:
dist.barrier()
validation_pbar = tqdm(
enumerate(zip(source_images,
test_videos, sizes, steps)),
total=len(source_images),
desc=f"validation local rank{args.local_rank}",
ncols=75
)
save_dir = opj(args.sample_save_dir, f"Epoch{epoch}_Iter{global_step}")
os.makedirs(save_dir, exist_ok=True)
for idx, (source_image_p, test_video_p, size, step) in validation_pbar:
prompt = n_prompt = ""
if args.motion_type != "densepose_rgb":
test_video_p = test_video_p.replace("densepose_rgb", args.motion_type)
if test_video_p.endswith('.mp4'):
control = VideoReader(test_video_p).read()
if control[0].shape[0] != size:
control = [np.array(image_transform(Image.fromarray(c))) for c in control]
if config.max_length is not None:
control = control[config.offset: (config.offset+config.max_length)]
control = np.array(control)
if source_image_p.endswith(".mp4"):
source_image = np.array(image_transform(Image.fromarray(VideoReader(source_image_p).read()[0])))
else:
source_image = np.array(Image.open(source_image_p).resize((size, size)))
H, W, C = source_image.shape
init_latents = None
original_length = control.shape[0]
if control.shape[0] % config.L > 0:
control = np.pad(control, ((0, config.L-control.shape[0] % config.L), (0, 0), (0, 0), (0, 0)), mode='edge')
generator = torch.Generator(device=device)
generator.manual_seed(torch.initial_seed())
with torch.autocast("cuda"), torch.no_grad():
sample = validation_pipeline(
prompt,
negative_prompt = n_prompt,
num_inference_steps = config.steps,
guidance_scale = config.guidance_scale,
width = W,
height = H,
video_length = len(control),
controlnet_condition = control,
context_frames = config.L,
context_overlap = config.L // 4,
init_latents = init_latents,
generator = generator,
num_actual_inference_steps = num_actual_inference_steps,
appearance_encoder = appearance_encoder.module if hasattr(appearance_encoder, "module") else appearance_encoder,
reference_control_writer = reference_control_writer,
reference_control_reader = reference_control_reader,
source_image = source_image,
dist=True, rank=args.local_rank,
use_temporal_taumap = True,
use_temporal_controlnet = args.use_temporal_controlnet,
use_noisy_ref_img = args.use_noisy_ref_img,
).videos
samples_per_video = []
save_source_images = np.array([source_image] * original_length)
save_source_images = rearrange(torch.from_numpy(save_source_images), "t h w c -> 1 c t h w") / 255.0
samples_per_video.append(save_source_images)
control = control / 255.0
control = rearrange(control, "t h w c -> 1 c t h w")
control = torch.from_numpy(control)
samples_per_video.append(control[:, :, :original_length])
samples_per_video.append(sample[:, :, :original_length])
samples_per_video = torch.cat(samples_per_video)
source_dn = os.path.basename(os.path.dirname(source_image_p))
source_bn = os.path.splitext(os.path.basename(source_image_p))[0]
source_fn = source_bn if ("pose" in source_dn) or ("image" in source_dn) else source_dn
video_dn = os.path.basename(os.path.dirname(test_video_p))
video_bn = os.path.splitext(os.path.basename(test_video_p))[0]
video_fn = video_bn if ("pose" in video_dn) or ("pose" in video_dn) else video_dn
save_p = opj(save_dir, f"videos/{source_fn}__{video_fn}.mp4")
save_grid_p = opj(save_dir, f"videos/{source_fn}__{video_fn}_grid.mp4")
save_videos_grid(samples_per_video[-1:], save_p)
save_videos_grid(samples_per_video, save_grid_p)
print(f"save video to : {save_p}")
reference_control_writer = ReferenceAttentionControl(
appearance_encoder.module if hasattr(appearance_encoder, "module") else appearance_encoder,
do_classifier_free_guidance=True,
mode="write",
fusion_blocks=config.fusion_blocks,
batch_size=args.batch_size,
is_train=True,
is_second_stage=args.is_second_stage
)
reference_control_reader = ReferenceAttentionControl(
unet.module if hasattr(unet, "module") else unet,
do_classifier_free_guidance=True,
mode="read",
fusion_blocks=config.fusion_blocks,
batch_size=args.batch_size,
is_train=True,
is_second_stage=args.is_second_stage
)
if args.DDP:
dist.barrier()
if is_main_process:
torch.cuda.empty_cache()
os.system(f"./gen_eval_tiktok.sh {save_dir}")
if args.DDP:
dist.barrier()
global_step += 1
tl.set_postfix(loss=loss.item(), loss_avg=loss_avgmeter.avg)
if is_main_process:
tb_writer.add_scalar("loss epoch", loss_avgmeter.avg, epoch)
if args.DDP:
dist.destroy_process_group()
if __name__=="__main__":
args = parse_args()
main(args)