-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImgProcess.py
51 lines (42 loc) · 1.5 KB
/
ImgProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import numpy as np
import os
from random import shuffle
from tqdm import tqdm
TRAIN_DIR = 'C:/Users/DELL/Desktop/Self Learning/dataset/catdog/train'
TEST_DIR = 'C:/Users/DELL/Desktop/Self Learning/dataset/catdog/test'
IMG_SIZE = 50
LR = 1e-3
MODEL_NAME = 'dogsvscats-{}-{}.model'.format(LR, '2conv-basic')
def label_img(img):
# dog.93.png
word_label = img.split('.')[-3]
if word_label == 'cat': return [1,0]
elif word_label == 'dog' : return [0,1]
def create_train_data():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR)):
label = label_img(img)
path = os.path.join(TRAIN_DIR, img)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img,(IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save('train_data.npy',training_data)
return training_data
def process_test_data():
testing_data = []
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR,img)
img_num = img.split('.')[0]
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
testing_data.append([np.array(img), img_num])
#shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data
#train_data = create_train_data()
# If you have already created the dataset:
#train_data = np.load('train_data.npy')
test_data = process_test_data()
#test_data = np.load('test_data.npy')