- cvpods_playground
All experiments are conducted on servers with 8 NVIDIA V100 / 2080Ti GPUs (PCIE). The software in use were PyTorch 1.3, CUDA 10.1, cuDNN 7.6.3.
Comming Soon.
Comming Soon.
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
FasterRCNN-R50-FPN | 640-800 | 90k | 0.225(2080ti) | 2.82 | 38.1 | LINK |
FasterRCNN-R50-FPN-SyncBN | 640-800 | 180k | 0.546 | 5.23 | 39.9 | LINK |
FasterRCNN-ResNeSt50-FPN | 800 | 90k | 0.416 | 3.53 | 39.9 | LINK |
FasterRCNN-ResNeSt50-FPN-SyncBN | 640-800 | 90k | 0.661 | 5.35 | 42.5 | LINK |
FasterRCNN-MOBILENET-FPN | 640-800 | 90k | 0.279(2080ti) | 3.47 | 29.27 | LINK |
FasterRCNN-MOBILENET-FPN-NoP2 | 640-800 | 90k | 0.227(2080ti) | 2.49 | 29.57 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
RetinaNet-R50 | 800 | 90k | 0.3593 | 3.85 | 35.9 | LINK |
RetinaNet-R50 | 640-800 | 90k | 0.244 | 3.84 | 36.5 | LINK |
RetinaNet-R50 | 640-800 | 90k | 0.344(2080ti) | 3.96 | 37.2 | LINK |
RetinaNet-R50-DRLoss | 800 | 90k | 0.357(2080ti) | 3.72 | 37.4 | LINK |
RetinaNet-MOBILENET | 640-800 | 90k | 0.266 | 4.46 | 28.5 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
FCOS-R50-FPN | 800 | 90k | 0.334(2080ti) | 3.09 | 38.8 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
ATSS-R50-FPN | 800 | 90k | 0.340(2080ti) | 3.09 | 39.3 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
FreeAnchor-R50-FPN | 800 | 90k | 0.353(2080ti) | 4.08 | 38.3 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
TridentNet-R50-C4 | 800 | 90k | 0.754(2080ti) | 4.65 | 37.7 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
RepPoints-R50-FPN | 800 | 90k | 0.415(2080ti) | 2.85 | 38.2 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
CenterNet-R18 | 512 | 126k | TBD | TBD | 29.8 | TBD) |
CenterNet-R50 | 512 | 126k | TBD | TBD | 34.9 | TBD) |
CenterNet-R101 | 512 | 126k | TBD | TBD | 36.8 | TBD) |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
EffDet0-Effnet0-BiFPN | 512 | 562k | 0.540(2080ti) | 5.77 | 32.6 | LINK |
EffDet0-Effnet0-BiFPN-SyncBN | 512 | 562k | 0.760(2080ti) | 5.77 | 33.2 | LINK |
EffDet1-Effnet1-BiFPN | 640 | 562k | 0.782(v100) | 23.18 | 38.1 | LINK |
EffDet1-Effnet1-BiFPN-SyncBN | 640 | 562k | 1.182(v100) | 23.18 | 38.0 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
YOLOv3-Darknet53-SyncBN | 320-608 | 470k | 0.729 | 7.45 | 37.5 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
SSD-VGG16 | 300 | 200k | 0.442 | 1.93 | 23.6 | LINK |
SSD-VGG16-Expand | 300 | 200k | 0.448 | 1.93 | 24.9 | LINK |
SSD-VGG16 | 512 | 200k | 0.487 | 4.37 | 26.7 | LINK |
SSD-VGG16-Expand | 512 | 200k | 0.491 | 4.37 | 29.0 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
DETR-R50-C5 | 480-800 | 150e | 0.270(v100) | 3.62 | 38.7 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
SparseRCNN-R50-FPN | 480-800 | 270k | 0.627(2080ti) | 4.11 | 43.2 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | AP | AP50 | AP75 | Trained Model |
---|---|---|---|---|---|---|---|---|
FasterRCNN-R50-FPN | 480-800 | 18k | 0.377 | 2.82 | 54.2 | 82.1 | 59.3 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | Trained Model |
---|---|---|---|---|---|---|
RetinaNet-R50 | 600 | 45k | 0.342 | 4.76 | 49.4 | LINK |
FCOS-R50-FPN | 600 | 45k | 0.382 | 5.75 | 50.8 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | MR | Trained Model |
---|---|---|---|---|---|---|---|
FasterRCNN-R50-FPN | 640 | 9K | 0.401 | 3.38 | 36.1 | 0.37 | LINK |
RetinaNet-R50 | 640 | 18k | 0.349 | 2.97 | 33.6 | 0.42 | LINK |
FCOS-R50-FPN | 640 | 9K | 0.375 | 3.55 | 35.7 | 0.40 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | MR | Trained Model |
---|---|---|---|---|---|---|---|
FasterRCNN-R50-FPN | 800 | 2.8K | 0.856 | 4.80 | 84.1 | 0.481 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | mask AP | Trained Model |
---|---|---|---|---|---|---|---|
MaskRCNN-R50-C4 | 640-800 | 90k | 0.609 | 5.04 | 36.8 | 32.2 | LINK |
MaskRCNN-R50-C4-SyncBN-ExtraNorm | 640-800 | 90k | 0.852 | 9.82 | 37.9 | 33.1 | LINK |
MaskRCNN-R50-C4-SyncBN | 640-800 | 180k | 0.837 | 9.82 | 39.9 | 34.5 | LINK) |
MaskRCNN-R50-C4-SyncBN-ExtraNorm | 640-800 | 180k | 0.853 | 9.82 | 40.1 | 34.7 | LINK |
MaskRCNN-R50-FPN | 640-800 | 90k | 0.297(2080ti) | 3.36 | 38.5 | 35.2 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | mask AP | Trained Model |
---|---|---|---|---|---|---|---|
TensorMask-R50-FPN | 800 | 90k | 0.788(2080ti) | 7.83 | 37.5 | 32.3 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | mask AP | Trained Model |
---|---|---|---|---|---|---|---|
CascadeRCNN-R50-FPN | 800 | 90k | 0.546 | 3.91 | 41.7 | 36.1 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | mask AP | Trained Model |
---|---|---|---|---|---|---|---|
PointRend-R50-FPN | 640-800 | 90k | 0.439 | 4.88 | 38.4 | 36.2 | LINK |
PointRend-R50-FPN | 640-800 | 270k | 0.416 | 4.88 | 41.1 | 38.2 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | mask AP | Trained Model |
---|---|---|---|---|---|---|---|
SOLO-R50-FPN | 800 | 90k | 0.970 | 6.99 | 33.1 | 32.7 | LINK |
SOLO-R50-FPN | 640-800 | 270k | 0.950 | 6.99 | 35.6 | 35.2 | LINK |
DecoupledSOLO-R50-FPN | 800 | 90k | 1.097 | 6.68 | 34.0 | 33.7 | LINK |
DecoupledSOLO-R50-FPN | 640-800 | 270k | 0.922 | 6.47 | 35.9 | 35.6 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | mask AP | Trained Model |
---|---|---|---|---|---|---|---|
MaskRCNN-R50-FPN | 800 | 90k | 0.486 | 5.26 | 20.3 | 21.0 | LINK |
MaskRCNN-R50-FPN-DataResampling | 800 | 90k | 0.500 | 5.26 | 23.0 | 23.1 | LINK |
MaskRCNN-R50-FPN-DataResampling | 640-800 | 90k | 0.485 | 5.25 | 24.1 | 24.7 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | mask AP | |
---|---|---|---|---|---|---|
MaskRCNN-R50-FPN | 640-800 | 90k | 0.737 | 5.21 | 37.4 | LINK |
PointRend-R50-FPN | 800-1024 | 240k | 0.746 | 8.21 | 36.0 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | mIoU | Trained Model |
---|---|---|---|---|---|---|
SemanticFPN-R50-FPN | 640-800 | 90k | 0.285 | 6.16 | 40.3 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | mIoU | Trained Model |
---|---|---|---|---|---|---|
PointRend-R101-FPN | 512-2048 | 65k | 1.900 | 3.88 | 78.2 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | mIoU | Trained Model |
---|---|---|---|---|---|---|
Dynamic-A | 512-2048 | 190k | 0.736 | 8.74 | 75.7 | LINK |
Dynamic-B | 512-2048 | 190k | 0.706 | 8.74 | 75.3 | LINK |
Dynamic-C | 512-2048 | 190k | 0.717 | 8.74 | 76.2 | LINK |
Dynamic-Raw | 512-2048 | 190k | 0.757 | 8.73 | 76.5 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | mIoU | Trained Model |
---|---|---|---|---|---|---|
FCN-Res101-s32 | 512-2048 | 65k | 0.605 | 3.44 | 71.9 | LINK |
FCN-Res101-s16 | 512-2048 | 65k | 0.593 | 3.41 | 73.5 | LINK |
FCN-Res101-s8 | 512-2048 | 65k | 0.541 | 3.41 | 74.0 | LINK |
Name | input size | lr sched | train time (s/iter) | train mem (GB) | PG | Trained Model |
---|---|---|---|---|---|---|
PanopticFPN-R50-FPN-800 | 800 | 90k | 0.4842 | 4.74 | 39.4 | LINK |
PanopticFPN-R50-FPN-MS | 640-800 | 90k | 0.4657 | 4.74 | 39.5 | LINK |
Named | input size | lr sched | train time (s/iter) | train mem (GB) | box AP | kp AP |
---|---|---|---|---|---|---|
RCNN_R50_FPN | 480-800 | 90k | 0.4r0(2080Ti) | 4.47 | 53.7 | 64.2 |
Comming Soon.