-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctypeslib.py
355 lines (302 loc) · 11 KB
/
ctypeslib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""
============================
``ctypes`` Utility Functions
============================
See Also
---------
load_library : Load a C library.
ndpointer : Array restype/argtype with verification.
as_ctypes : Create a ctypes array from an ndarray.
as_array : Create an ndarray from a ctypes array.
References
----------
.. [1] "SciPy Cookbook: ctypes", http://www.scipy.org/Cookbook/Ctypes
Examples
--------
Load the C library:
>>> _lib = np.ctypeslib.load_library('libmystuff', '.') #DOCTEST: +ignore
Our result type, an ndarray that must be of type double, be 1-dimensional
and is C-contiguous in memory:
>>> array_1d_double = np.ctypeslib.ndpointer(
... dtype=np.double,
... ndim=1, flags='CONTIGUOUS') #DOCTEST: +ignore
Our C-function typically takes an array and updates its values
in-place. For example::
void foo_func(double* x, int length)
{
int i;
for (i = 0; i < length; i++) {
x[i] = i*i;
}
}
We wrap it using:
>>> lib.foo_func.restype = None #DOCTEST: +ignore
>>> lib.foo.argtypes = [array_1d_double, c_int] #DOCTEST: +ignore
Then, we're ready to call ``foo_func``:
>>> out = np.empty(15, dtype=np.double)
>>> _lib.foo_func(out, len(out)) #DOCTEST: +ignore
"""
__all__ = ['load_library', 'ndpointer', 'test', 'ctypes_load_library',
'c_intp', 'as_ctypes', 'as_array']
import sys, os
from numpy import integer, ndarray, dtype as _dtype, deprecate, array
from numpy.core.multiarray import _flagdict, flagsobj
try:
import ctypes
except ImportError:
ctypes = None
if ctypes is None:
def _dummy(*args, **kwds):
raise ImportError, "ctypes is not available."
ctypes_load_library = _dummy
load_library = _dummy
as_ctypes = _dummy
as_array = _dummy
from numpy import intp as c_intp
else:
import numpy.core._internal as nic
c_intp = nic._getintp_ctype()
del nic
# Adapted from Albert Strasheim
def load_library(libname, loader_path):
if ctypes.__version__ < '1.0.1':
import warnings
warnings.warn("All features of ctypes interface may not work " \
"with ctypes < 1.0.1")
ext = os.path.splitext(libname)[1]
if not ext:
# Try to load library with platform-specific name, otherwise
# default to libname.[so|pyd]. Sometimes, these files are built
# erroneously on non-linux platforms.
libname_ext = ['%s.so' % libname, '%s.pyd' % libname]
if sys.platform == 'win32':
libname_ext.insert(0, '%s.dll' % libname)
elif sys.platform == 'darwin':
libname_ext.insert(0, '%s.dylib' % libname)
else:
libname_ext = [libname]
loader_path = os.path.abspath(loader_path)
if not os.path.isdir(loader_path):
libdir = os.path.dirname(loader_path)
else:
libdir = loader_path
for ln in libname_ext:
try:
libpath = os.path.join(libdir, ln)
return ctypes.cdll[libpath]
except OSError, e:
pass
raise e
ctypes_load_library = deprecate(load_library, 'ctypes_load_library',
'load_library')
def _num_fromflags(flaglist):
num = 0
for val in flaglist:
num += _flagdict[val]
return num
_flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE',
'OWNDATA', 'UPDATEIFCOPY']
def _flags_fromnum(num):
res = []
for key in _flagnames:
value = _flagdict[key]
if (num & value):
res.append(key)
return res
class _ndptr(object):
def from_param(cls, obj):
if not isinstance(obj, ndarray):
raise TypeError, "argument must be an ndarray"
if cls._dtype_ is not None \
and obj.dtype != cls._dtype_:
raise TypeError, "array must have data type %s" % cls._dtype_
if cls._ndim_ is not None \
and obj.ndim != cls._ndim_:
raise TypeError, "array must have %d dimension(s)" % cls._ndim_
if cls._shape_ is not None \
and obj.shape != cls._shape_:
raise TypeError, "array must have shape %s" % str(cls._shape_)
if cls._flags_ is not None \
and ((obj.flags.num & cls._flags_) != cls._flags_):
raise TypeError, "array must have flags %s" % \
_flags_fromnum(cls._flags_)
return obj.ctypes
from_param = classmethod(from_param)
# Factory for an array-checking class with from_param defined for
# use with ctypes argtypes mechanism
_pointer_type_cache = {}
def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
"""
Array-checking restype/argtypes.
An ndpointer instance is used to describe an ndarray in restypes
and argtypes specifications. This approach is more flexible than
using, for example, ``POINTER(c_double)``, since several restrictions
can be specified, which are verified upon calling the ctypes function.
These include data type, number of dimensions, shape and flags. If a
given array does not satisfy the specified restrictions,
a ``TypeError`` is raised.
Parameters
----------
dtype : data-type, optional
Array data-type.
ndim : int, optional
Number of array dimensions.
shape : tuple of ints, optional
Array shape.
flags : string or tuple of strings
Array flags; may be one or more of:
- C_CONTIGUOUS / C / CONTIGUOUS
- F_CONTIGUOUS / F / FORTRAN
- OWNDATA / O
- WRITEABLE / W
- ALIGNED / A
- UPDATEIFCOPY / U
Examples
--------
>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
"""
if dtype is not None:
dtype = _dtype(dtype)
num = None
if flags is not None:
if isinstance(flags, str):
flags = flags.split(',')
elif isinstance(flags, (int, integer)):
num = flags
flags = _flags_fromnum(num)
elif isinstance(flags, flagsobj):
num = flags.num
flags = _flags_fromnum(num)
if num is None:
try:
flags = [x.strip().upper() for x in flags]
except:
raise TypeError, "invalid flags specification"
num = _num_fromflags(flags)
try:
return _pointer_type_cache[(dtype, ndim, shape, num)]
except KeyError:
pass
if dtype is None:
name = 'any'
elif dtype.names:
name = str(id(dtype))
else:
name = dtype.str
if ndim is not None:
name += "_%dd" % ndim
if shape is not None:
try:
strshape = [str(x) for x in shape]
except TypeError:
strshape = [str(shape)]
shape = (shape,)
shape = tuple(shape)
name += "_"+"x".join(strshape)
if flags is not None:
name += "_"+"_".join(flags)
else:
flags = []
klass = type("ndpointer_%s"%name, (_ndptr,),
{"_dtype_": dtype,
"_shape_" : shape,
"_ndim_" : ndim,
"_flags_" : num})
_pointer_type_cache[dtype] = klass
return klass
if ctypes is not None:
ct = ctypes
################################################################
# simple types
# maps the numpy typecodes like '<f8' to simple ctypes types like
# c_double. Filled in by prep_simple.
_typecodes = {}
def prep_simple(simple_type, typestr):
"""Given a ctypes simple type, construct and attach an
__array_interface__ property to it if it does not yet have one.
"""
try: simple_type.__array_interface__
except AttributeError: pass
else: return
_typecodes[typestr] = simple_type
def __array_interface__(self):
return {'descr': [('', typestr)],
'__ref': self,
'strides': None,
'shape': (),
'version': 3,
'typestr': typestr,
'data': (ct.addressof(self), False),
}
simple_type.__array_interface__ = property(__array_interface__)
if sys.byteorder == "little":
TYPESTR = "<%c%d"
else:
TYPESTR = ">%c%d"
simple_types = [
((ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong), "i"),
((ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong), "u"),
((ct.c_float, ct.c_double), "f"),
]
# Prep that numerical ctypes types:
for types, code in simple_types:
for tp in types:
prep_simple(tp, TYPESTR % (code, ct.sizeof(tp)))
################################################################
# array types
_ARRAY_TYPE = type(ct.c_int * 1)
def prep_array(array_type):
"""Given a ctypes array type, construct and attach an
__array_interface__ property to it if it does not yet have one.
"""
try: array_type.__array_interface__
except AttributeError: pass
else: return
shape = []
ob = array_type
while type(ob) == _ARRAY_TYPE:
shape.append(ob._length_)
ob = ob._type_
shape = tuple(shape)
ai = ob().__array_interface__
descr = ai['descr']
typestr = ai['typestr']
def __array_interface__(self):
return {'descr': descr,
'__ref': self,
'strides': None,
'shape': shape,
'version': 3,
'typestr': typestr,
'data': (ct.addressof(self), False),
}
array_type.__array_interface__ = property(__array_interface__)
################################################################
# public functions
def as_array(obj):
"""Create a numpy array from a ctypes array. The numpy array
shares the memory with the ctypes object."""
tp = type(obj)
try: tp.__array_interface__
except AttributeError: prep_array(tp)
return array(obj, copy=False)
def as_ctypes(obj):
"""Create and return a ctypes object from a numpy array. Actually
anything that exposes the __array_interface__ is accepted."""
ai = obj.__array_interface__
if ai["strides"]:
raise TypeError("strided arrays not supported")
if ai["version"] != 3:
raise TypeError("only __array_interface__ version 3 supported")
addr, readonly = ai["data"]
if readonly:
raise TypeError("readonly arrays unsupported")
tp = _typecodes[ai["typestr"]]
for dim in ai["shape"][::-1]:
tp = tp * dim
result = tp.from_address(addr)
result.__keep = ai
return result