-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathUtils.cpp
202 lines (179 loc) · 5.46 KB
/
Utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#include "Utils.h"
namespace DNest4
{
double mod(double y, double x)
{
assert(x > 0.);
return (y/x - floor(y/x))*x;
}
void wrap(double& x, double min, double max)
{
x = DNest4::mod(x - min, max - min) + min;
}
int mod(int y, int x)
{
assert(x > 0);
if(y >= 0)
return y - (y/x)*x;
else
return (x-1) - DNest4::mod(-y-1, x);
}
double logsumexp(double* logv, int n)
{
assert(n > 1);
double max = logv[0];
for(int i=1; i<n; i++)
if(logv[i] > max)
max = logv[i];
double answer = 0;
// log(sum(exp(logf)) = log(sum(exp(logf - max(logf) + max(logf)))
// = max(logf) + log(sum(exp(logf - max(logf)))
for(int i=0; i<n; i++)
answer += exp(logv[i] - max);
answer = max + log(answer);
return answer;
}
double logsumexp(const std::vector<double>& logv)
{
int n = static_cast<int>(logv.size());
//if(n<=1)
// cout<<"Warning in logsumexp"<<endl;
double max = *max_element(logv.begin(), logv.end());
double answer = 0;
// log(sum(exp(logf)) = log(sum(exp(logf - max(logf) + max(logf)))
// = max(logf) + log(sum(exp(logf - max(logf)))
for(int i=0; i<n; i++)
answer += exp(logv[i] - max);
answer = max + log(answer);
return answer;
}
double logsumexp(double a, double b)
{
double x[2] = {a,b};
return DNest4::logsumexp(x, 2);
}
double logdiffexp(double a, double b)
{
assert(a > b);
double biggest = a;
a -= biggest;
b -= biggest;
return log(exp(a) - exp(b)) + biggest;
}
double normal_cdf(double x)
{
return 0.5*(1. + erf(x/sqrt(2.)));
}
// Compute the inverse of the Normal Cumulative Density Function
// Original FORTRAN77 version by Michael Wichura.
// C++ version by John Burkardt (GNU LGPL license) available at
// http://people.sc.fsu.edu/~jburkardt/cpp_src/asa241/asa241.html
// Reference:
// Michael Wichura
// The Percentage Points of the Normal Distribution
// Algorithm AS 241, Applied Statistics, 37, 3, 477-484, 1988
double normal_inverse_cdf(double p)
{
static double a[8] = {
3.3871328727963666080, 1.3314166789178437745e+2,
1.9715909503065514427e+3, 1.3731693765509461125e+4,
4.5921953931549871457e+4, 6.7265770927008700853e+4,
3.3430575583588128105e+4, 2.5090809287301226727e+3 };
static double b[8] = {
1.0, 4.2313330701600911252e+1,
6.8718700749205790830e+2, 5.3941960214247511077e+3,
2.1213794301586595867e+4, 3.9307895800092710610e+4,
2.8729085735721942674e+4, 5.2264952788528545610e+3 };
static double c[8] = {
1.42343711074968357734, 4.63033784615654529590,
5.76949722146069140550, 3.64784832476320460504,
1.27045825245236838258, 2.41780725177450611770e-1,
2.27238449892691845833e-2, 7.74545014278341407640e-4 };
static double const1 = 0.180625;
static double const2 = 1.6;
static double d[8] = {
1.0, 2.05319162663775882187,
1.67638483018380384940, 6.89767334985100004550e-1,
1.48103976427480074590e-1, 1.51986665636164571966e-2,
5.47593808499534494600e-4, 1.05075007164441684324e-9 };
static double e[8] = {
6.65790464350110377720, 5.46378491116411436990,
1.78482653991729133580, 2.96560571828504891230e-1,
2.65321895265761230930e-2, 1.24266094738807843860e-3,
2.71155556874348757815e-5, 2.01033439929228813265e-7 };
static double f[8] = {
1.0, 5.99832206555887937690e-1,
1.36929880922735805310e-1, 1.48753612908506148525e-2,
7.86869131145613259100e-4, 1.84631831751005468180e-5,
1.42151175831644588870e-7, 2.04426310338993978564e-15 };
double q;
double r;
static double split1 = 0.425;
static double split2 = 5.0;
double value;
if(p < 0.0 || p > 1.0)
throw std::domain_error("Input to normal_inverse_cdf must be in (0, 1).");
q = p - 0.5;
if(fabs(q) <= split1)
{
r = const1 - q * q;
value = q * r8poly_value(8, a, r) / r8poly_value(8, b, r);
}
else
{
if(q < 0.0)
r = p;
else
r = 1.0 - p;
if(r <= 0.0)
return 0.; // IFAULT=1
r = sqrt(-log(r));
if(r <= split2)
{
r = r - const2;
value = r8poly_value(8, c, r) / r8poly_value(8, d, r);
}
else
{
r = r - split2;
value = r8poly_value(8, e, r) / r8poly_value(8, f, r);
}
if(q < 0.0)
value = -value;
}
return value;
}
// Evaluates a double precision polynomial. Author: John Burkardt
// http://people.sc.fsu.edu/~jburkardt/cpp_src/asa241/asa241.html
double r8poly_value(int n, double a[], double x)
{
int i;
double value = 0.0;
for (i=n-1; 0<=i; i--)
value = value * x + a[i];
return value;
}
double perturb_ns(std::vector<double>& ns, RNG& rng)
{
double logH = 0.0;
if(rng.rand() <= 0.5)
{
// Perturb a single n
int k = rng.rand_int(ns.size());
logH -= -0.5*pow(ns[k], 2);
ns[k] += rng.randh();
logH += -0.5*pow(ns[k], 2);
}
else
{
// Resample several ns
int reps = static_cast<int>(pow(ns.size(), rng.rand()));
for(int i=0; i<reps; ++i)
{
int k = rng.rand_int(ns.size());
ns[k] = rng.randn();
}
}
return logH;
}
} // namespace DNest4