-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·360 lines (273 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import ast, astor
import sys, os, copy, math, argparse, imp, importlib
import random as rand
from ast_helper import find_num, find_if, name_len, branch
from ga_helper import mutate, in_test, add_test
# Generarte input from function ast
def gen_input(func):
rt = []
arg_num = len(func.args.args)
special = list(set(find_num(func.body) + [0, 1, -1]))
while len(rt) < p:
inp = []
for j in range(arg_num):
if rand.random() <= 0.2:
inp.append(rand.choice(special))
else:
inp.append(rand.randint(-100, 100))
rt = add_test(rt, inp)
return special, rt
# Analyze the fitness output
def get_result(leaf_index):
f = open(br_file, "r")
br_data = f.readlines()
f.close()
# Maps branch id to branch distance
# Positive id : true branch, Negative id : false branch
# Passed branches : negative distance
br_dict = {}
for data in br_data:
br_id, br_type, br_dist = [int(x) for x in data.split(" ")]
# When branch is passed, make fitness negative(-1)
if (br_type == 0 and br_dist <= 0) or (br_type == 1 and br_dist < 0):
new_data = [(br_id, -1), (-br_id, -br_dist)]
else:
new_data = [(br_id, br_dist), (-br_id, -1)]
for tup in new_data:
item = br_dict.get(tup[0])
if item is None or item > tup[1]:
br_dict[tup[0]] = tup[1]
br_fit = {}
# For each leaves, find fitness
for leaf_ind, lvl_dict in leaf_index.items():
for ind, lvl in sorted(lvl_dict.items(), key=lambda tup: tup[1]):
dist = br_dict.get(ind)
if dist is not None:
if dist >= 0:
br_fit[leaf_ind] = lvl + float(dist + 1) / (dist + 2)
break
if dist < 0:
if lvl == 0:
br_fit[leaf_ind] = -1
# Parent passed but did not reach its child
else:
br_fit[leaf_ind] = lvl
break
# None itself or ancestors visited
if not leaf_ind in br_fit:
br_fit[leaf_ind] = len(lvl_dict) + 1
return br_fit
# Helps to suppress print
class HiddenPrint:
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
# Return string that
def tf_br(ind):
return '{}{}'.format(abs(ind), 'T' if ind > 0 else 'F')
# Main part tests, evolves test cases
def test_main(root_copy, body_ind, func_file_name):
func = root_copy.body[body_ind]
if not isinstance(func, ast.FunctionDef):
return
func_name = func.name
print('Function found ({})\n'.format(func_name))
func.name = new_func_name
if not func.args.args:
return
branch.br_list = [None]
find_if(func.body, 0, temp_name, file_name, True)
print('{} branches found'.format(len(branch.br_list) - 1))
# No branches found
if len(branch.br_list) == 1:
return
for cur_br in branch.br_list[1:]:
print('Branch #{} on line {}'.format(cur_br.ind, cur_br.lineno))
# Generate input
special, new_test = gen_input(func)
# Change function name and Import original function
func.name = new_func_name
root_copy.body.insert(0, ast.ImportFrom(module=sys.argv[1][:-3], names=[ast.alias(name=func_name, asname=None)], level=0))
func.args.args.insert(0, ast.Name(id=file_name))
# Write changed code on new file
code = astor.to_source(root_copy)
source_file = open(func_file_name, 'w')
source_file.write(code)
source_file.close()
# Get index of leaf branches (ind, app_lvl)
leaf_index = {}
for cur_br in branch.br_list[1:]:
# At least one of branches is leaf
if cur_br.reach and ((not cur_br.true) or (not cur_br.false)):
app_lvl = 1
lvl_dict = {}
next_ind = cur_br.parent
# Add parents till the root
while next_ind != 0:
lvl_dict[next_ind] = app_lvl
app_lvl += 1
next_ind = branch.br_list[abs(next_ind)].parent
# Branch without child branch is leaf
if not cur_br.true:
pos_dict = copy.deepcopy(lvl_dict)
pos_dict[cur_br.ind] = 0
leaf_index[cur_br.ind] = pos_dict
if not cur_br.false:
neg_dict = copy.deepcopy(lvl_dict)
neg_dict[-cur_br.ind] = 0
leaf_index[-cur_br.ind] = neg_dict
# Used for final printing
leaf_index_copy = copy.deepcopy(leaf_index)
# Branch fitness output with(test, output)
output = {}
# Print leaf branches and init output
print('\nLeaf branches:')
for leaf_ind in sorted(leaf_index.keys(), key=lambda ind: abs(ind) * 2 + (1 if ind < 0 else 0)):
print('{} '.format(tf_br(leaf_ind))),
output[leaf_ind] = []
print('\n')
# Import revised code
module = importlib.import_module(func_file_name[:-3])
method = getattr(module, new_func_name)
# Tests that cover each leaves
leaf_test = {}
sol_found = False
mid_gen = {int(math.floor(gen * i * 0.1)): i for i in range(1, 11)}
for i in range(gen):
if i in mid_gen:
print('{}0% generation processed'.format(mid_gen[i]))
new_output = []
for inp in new_test:
with HiddenPrint():
with open(br_file, 'w') as br_report:
try:
method(br_report, *inp)
except:
#Do nothing
i = i
new_output.append((inp, get_result(leaf_index)))
# Check whether the solution is found
for leaf_ind in leaf_index:
# When the test is found for leaf
if new_output[-1][1][leaf_ind] < 0:
leaf_test[leaf_ind] = copy.deepcopy(inp)
del leaf_index[leaf_ind]
if not bool(leaf_index):
print('Every tests ares found!\n')
sol_found = True
break
if sol_found:
break
# Solution found or last generation
if sol_found or i == gen - 1:
break
new_test = []
last_test_num = 0
for leaf_ind in leaf_index:
# Selct next generation saving some of current population
output[leaf_ind].extend(new_output)
output[leaf_ind] = output[leaf_ind][:save_p] + sorted(output[leaf_ind][save_p:], key=lambda data: data[1][leaf_ind])[:p - save_p]
output[leaf_ind] = sorted(output[leaf_ind], key=lambda data: data[1][leaf_ind])
# Generate test case until p tests
while len(new_test) - last_test_num < p:
pair = []
# Binary tournament selection
for k in range(2):
p1 = rand.choice(output[leaf_ind])
p2 = rand.choice(output[leaf_ind])
if p1[1][leaf_ind] < p2[1][leaf_ind]:
pair.append(p1)
elif p1[1][leaf_ind] > p2[1][leaf_ind]:
pair.append(p2)
else:
pair.append(rand.choice([p1, p2]))
if pair[0][0] == pair[1][0]:
continue
score1 = pair[0][1][leaf_ind]
score2 = pair[1][1][leaf_ind]
children = []
# Single point crossover
if len(pair[0][0]) > 1:
cross_point = rand.randint(1, len(pair[0][0]) - 1)
children.append(pair[0][0][:cross_point] + pair[1][0][cross_point:])
children.append(pair[1][0][:cross_point] + pair[0][0][cross_point:])
# If single point crossover is unvailable, mutate
else:
children.append(mutate(pair[0][0], special, 1.0, alpha, beta))
children.append(mutate(pair[1][0], special, 1.0, alpha, beta))
# Secant method
if score1 != score2:
children.append([int(math.ceil((pair[0][0][k] * (score2 + 1) - pair[1][0][k] * (score1 + 1)) / (score2 - score1))) for k in range(len(pair[0][0]))])
for child in children:
if rand.random() < 0.2 or child == pair[0][0] or child == pair[1][0]:
child = mutate(child, special, pm, alpha, beta)
if not in_test([out[0] for out in output[leaf_ind]], child):
new_test = add_test(new_test, child)
last_test_num = len(new_test)
node_test = {}
for leaf_ind, lvl_dict in leaf_index_copy.items():
# Solution found for leaf
if leaf_ind in leaf_test:
for parent in lvl_dict:
node_test[parent] = leaf_test[leaf_ind]
else:
test = output[leaf_ind][0][0]
best_lvl = int(math.ceil(output[leaf_ind][0][1][leaf_ind]))
for parent, lvl in lvl_dict.items():
# Add when only it's visited
if lvl >= best_lvl:
node_test[parent] = test
for ind in range(1, len(branch.br_list)):
tf = [ind, -ind]
for br in tf:
# Solution found
if br in node_test:
print('{}: {}'.format(tf_br(br), node_test[br]))
# Solution not found
else:
print('{}: -'.format(tf_br(br)))
print('\n')
# Delete trashes
del module
del method
if os.path.exists(func_file_name):
os.remove(func_file_name)
if os.path.exists(br_file):
os.remove(br_file)
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('py_file', type=str, help='Input python function file')
parser.add_argument('-p', '--p', type=int, help='Number of population', default=100)
parser.add_argument('-g', '--gen', type=int, help='Number of generation', default=1000)
parser.add_argument('-pm', '--pm', type=int, help='Probability of mutation in percentage', default=20)
parser.add_argument('-ps', '--ps', type=int, help='Percentage of population saved <= 50', default = 10)
parser.add_argument('-a', '--alpha', type=int, help='Alpha of gamma distribution', default=1)
parser.add_argument('-b', '--beta', type=int, help='Beta of gamma distribution', default=1)
parser.add_argument('-f', '--func', type=str, help='Name of revised python file', default='branch_dist_print')
parser.add_argument('-br', '--br', type=str, help='Name of branch distance file', default='br_dist')
args = parser.parse_args()
root = astor.code_to_ast.parse_file(args.py_file)
# Apply not used variable name for output file and temp var
var_len = name_len(root.body) + 1
file_name = 'f' * var_len
temp_name = 't' * var_len
new_func_name = 'f' * (var_len + 1)
# Size of population
p = args.p if args.p > 0 else 100
save_p = int(math.floor(float(p) * (args.ps if args.ps in range(0, 51) else 10) / 100))
# Number of generations
gen = args.gen if args.gen > 0 else 1000
pm = args.pm if args.pm in range(0, 101) else 20
pm = float(pm) / 100
# Gamma distribution
alpha = args.alpha if args.alpha > 0 else 1
beta = args.beta if args.beta > 0 else 1
# File names
func_file = args.func
br_file = args.br
for ind in range(len(root.body)):
test = test_main(copy.deepcopy(root), ind, func_file + str(ind) + '.py')