From 7fc764f5e5c9470db40eebe2662fa2a84034a1f2 Mon Sep 17 00:00:00 2001 From: StevenPuttemans Date: Mon, 12 May 2014 16:45:42 +0200 Subject: [PATCH] added documentation for findContours --- .../imgproc/doc/structural_analysis_and_shape_descriptors.rst | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst b/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst index de4e585d8cdc..29e8b9857146 100644 --- a/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst +++ b/modules/imgproc/doc/structural_analysis_and_shape_descriptors.rst @@ -133,7 +133,7 @@ Finds contours in a binary image. .. ocv:pyoldfunction:: cv.FindContours(image, storage, mode=CV_RETR_LIST, method=CV_CHAIN_APPROX_SIMPLE, offset=(0, 0)) -> contours - :param image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero pixels remain 0's, so the image is treated as ``binary`` . You can use :ocv:func:`compare` , :ocv:func:`inRange` , :ocv:func:`threshold` , :ocv:func:`adaptiveThreshold` , :ocv:func:`Canny` , and others to create a binary image out of a grayscale or color one. The function modifies the ``image`` while extracting the contours. + :param image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero pixels remain 0's, so the image is treated as ``binary`` . You can use :ocv:func:`compare` , :ocv:func:`inRange` , :ocv:func:`threshold` , :ocv:func:`adaptiveThreshold` , :ocv:func:`Canny` , and others to create a binary image out of a grayscale or color one. The function modifies the ``image`` while extracting the contours. If mode equals to ``CV_RETR_CCOMP`` or ``CV_RETR_FLOODFILL``, the input can also be a 32-bit integer image of labels (``CV_32SC1``). :param contours: Detected contours. Each contour is stored as a vector of points.