-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathexecute_pulp.py
175 lines (139 loc) · 6.57 KB
/
execute_pulp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
import logging
from time import time
import pulp
import helper
import process_data
from parameters import model_params
__author__ = 'Ehsan Khodabandeh'
__version__ = '1.0'
# ====================================
LOG_FORMAT = '%(asctime)s %(name)-12s %(levelname)s : %(message)s'
logging.basicConfig(format=LOG_FORMAT, level=logging.INFO)
# Since the level here is INFO, all the logger.debug below are not displayed
logger = logging.getLogger(__name__ + ': ')
# ====================================
# Pulp addConstraint function doesn't return the constraint object.
# So, to have a consistent object, we return it ourselves
def add_constr(model, constraint):
model.addConstraint(constraint)
return constraint
# ================== Set up data ==================
input_df_dict, input_param_dict = process_data.load_data()
logger.info('Data is loaded!')
# ================== Set up the optimization model ==================
"""
Parameters:
h: unit holding cost
p: production capacity per month
I_0: initial_inventory
c_t: unit production cost in month t
d_t: demand of month t
Variables:
X_t: Amount produced in month t
I_t: Inventory at the end of period t
Constraints:
Inventory Constraints: I_{t-1} + X_t - d_t = I_t
Capacity Constraints: X_t <= p
Objective: Min Sum(h*I_t + c_t*X_t)
"""
model = pulp.LpProblem(name='prod_planning', sense=pulp.LpMinimize)
start = time()
# Which of the following variable declarations is better? Well, it depends!
# Knowing different ways of coding the variables and constraints,
# you can evaluate their execution time and use them depending on your case!
# Even "insertions sort" can sometimes become the best sorting algorithm!
# https://www.toptal.com/developers/sorting-algorithms
# ================== Decision variables ==================
production_variables = pulp.LpVariable.dicts(name='X', indexs=input_df_dict['input_data'].index,
lowBound=0, cat=pulp.LpContinuous)
inventory_variables = pulp.LpVariable.dicts(name='I', indexs=input_df_dict['input_data'].index,
lowBound=0, cat=pulp.LpContinuous)
# Alternative way of creating the variables
# production_variables = {index: pulp.LpVariable(name='X_' + str(row['period']),
# lowBound=0, cat=pulp.LpContinuous)
# for index, row in input_df_dict['input_data'].iterrows()}
#
# inventory_variables = {index: pulp.LpVariable(name='I_' + str(row['period']),
# lowBound=0, cat=pulp.LpContinuous)
# for index, row in input_df_dict['input_data'].iterrows()}
logger.debug("var declaration time: {:.6f}".format(time() - start))
# Version 1
# ================== Inventory balance constraints ==================
for period, value in input_df_dict['input_data'].iloc[1:].iterrows():
model.addConstraint(pulp.LpConstraint(
e=inventory_variables[period - 1] + production_variables[period] - inventory_variables[period],
sense=pulp.LpConstraintEQ,
name='inv_balance' + str(period),
rhs=value.demand))
# inv balance for first period
model.addConstraint(pulp.LpConstraint(
e=production_variables[0] - inventory_variables[0],
sense=pulp.LpConstraintEQ,
name='inv_balance0',
rhs=input_df_dict['input_data'].iloc[0].demand - input_param_dict['initial_inventory']))
# ================== Production capacity constraints ==================
for index, value in production_variables.items():
model.addConstraint(pulp.LpConstraint(
e=value,
sense=pulp.LpConstraintLE,
name='prod_cap_month_' + str(index),
rhs=input_df_dict['input_data'].iloc[index].production_capacity))
"""
Following is an alternative way of defining the above 3 constraints.
I show you version 2 and 2-modified (the correct choice) for illustration.
Check for yourself the difference between the two.
# ================== Inventory balance constraints ==================
# Version 2
inv_balance_constraints = {
period: model.addConstraint(pulp.LpConstraint(
e=inventory_variables[period - 1] + production_variables[period] - inventory_variables[period],
sense=pulp.LpConstraintEQ,
name='inv_balance' + str(period),
rhs=value.demand))
for period, value in input_df_dict['input_data'].iloc[1:].iterrows()}
# Version 2-modified
inv_balance_constraints = {
period: add_constr(model, pulp.LpConstraint(
e=inventory_variables[period - 1] + production_variables[period] - inventory_variables[period],
sense=pulp.LpConstraintEQ,
name='inv_balance' + str(period),
rhs=value.demand))
for period, value in input_df_dict['input_data'].iloc[1:].iterrows()}
# inv balance for first period
first_period_inv_balance_constraints = add_constr(model, pulp.LpConstraint(
e=production_variables[0] - inventory_variables[0],
sense=pulp.LpConstraintEQ,
name='inv_balance0',
rhs=input_df_dict['input_data'].iloc[0].demand - input_param_dict['initial_inventory']))
# ================== Production capacity constraints ==================
production_capacity_constraints = {
index: add_constr(model, pulp.LpConstraint(
e=value,
sense=pulp.LpConstraintLE,
name='prod_cap_month_' + str(index),
rhs=input_df_dict['input_data'].iloc[index].production_capacity))
for index, value in production_variables.items()}
"""
# ================== Costs and objective function ==================
total_holding_cost = input_param_dict['holding_cost'] * pulp.lpSum(inventory_variables)
total_production_cost = pulp.lpSum(row['production_cost'] * production_variables[index]
for index, row in input_df_dict['input_data'].iterrows())
objective = total_holding_cost + total_production_cost
model.setObjective(objective)
logger.info('Model creation time in sec: {:.4f}'.format(time() - start))
# ================== Optimization ==================
if model_params['write_lp']:
logger.info('Writing the lp file!')
model.writeLP(model.name + '.lp')
logger.info('Optimization starts!')
model.solve()
if model.status == pulp.LpStatusOptimal:
logger.info('The solution is optimal and the objective value '
'is ${:,.2f}'.format(pulp.value(model.objective)))
# ================== Output ==================
dict_of_variables = {'production_variables': production_variables,
'inventory_variables': inventory_variables}
output_df = process_data.write_outputs(dict_of_variables)
helper.write_to_csv(output_df)
logger.info('Outputs are written to csv!')