-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathexecute_xpress.py
139 lines (109 loc) · 4.98 KB
/
execute_xpress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
import logging
from time import time
import xpress as xp
import helper
import process_data
from parameters import model_params
__author__ = 'Ehsan Khodabandeh'
__version__ = '1.0'
# ====================================
LOG_FORMAT = '%(asctime)s %(name)-12s %(levelname)s : %(message)s'
logging.basicConfig(format=LOG_FORMAT, level=logging.INFO)
# Since the level here is INFO, all the logger.debug below are not displayed
logger = logging.getLogger(__name__ + ': ')
# ================== Set up data ==================
input_df_dict, input_param_dict = process_data.load_data()
logger.info('Data is loaded!')
# ================== Set up the optimization model ==================
"""
Parameters:
h: unit holding cost
p: production capacity per month
I_0: initial_inventory
c_t: unit production cost in month t
d_t: demand of month t
Variables:
X_t: Amount produced in month t
I_t: Inventory at the end of period t
Constraints:
Inventory Constraints: I_{t-1} + X_t - d_t = I_t
Capacity Constraints: X_t <= p
Objective: Min Sum(h*I_t + c_t*X_t)
"""
model = xp.problem(name='prod_planning')
start = time()
# ================== Decision variables ==================
production_variables = xp.vars(input_df_dict['input_data'].index, name='X', vartype=xp.continuous)
inventory_variables = xp.vars(input_df_dict['input_data'].index, name='I', vartype=xp.continuous)
# Alternative way of creating the variables
# production_variables = {i: xp.var(name=f'X{i}', vartype=xp.continuous)
# for i in input_df_dict['input_data'].index}
# inventory_variables = {i: xp.var(name=f'I{i}', vartype=xp.continuous)
# for i in input_df_dict['input_data'].index}
model.addVariable(production_variables, inventory_variables)
logger.debug(f'var declaration time: {time() - start:.6f}')
# ================== Inventory balance constraints ==================
model.addConstraint(
xp.constraint(
body=inventory_variables[period - 1] + production_variables[period] - inventory_variables[period],
sense=xp.eq,
name='inv_balance' + str(period),
rhs=value.demand)
for period, value in input_df_dict['input_data'].iloc[1:].iterrows())
# inv balance for first period
model.addConstraint(
xp.constraint(
body=production_variables[0] - inventory_variables[0],
sense=xp.eq,
name='inv_balance0',
rhs=input_df_dict['input_data'].iloc[0].demand - input_param_dict['initial_inventory']))
# ================== Production capacity constraints ==================
model.addConstraint(
xp.constraint(
body=value,
sense=xp.leq,
name='prod_cap_month_' + str(index),
rhs=input_df_dict['input_data'].iloc[index].production_capacity)
for index, value in production_variables.items())
"""
# Following is an alternative way of defining the above 3 constraints.
# Check for yourself the difference between the two.
# ================== Inventory balance constraints ==================
# Version 2 # no name because no easy way without use of xp.constraint
model.addConstraint(
(inventory_variables[period - 1] + production_variables[period]
- inventory_variables[period] == value.demand)
for period, value in input_df_dict['input_data'].iloc[1:].iterrows())
# inv balance for first period
model.addConstraint(
production_variables[0] - inventory_variables[0]
== input_df_dict['input_data'].iloc[0].demand - input_param_dict['initial_inventory'])
# ================== Production capacity constraints ==================
model.addConstraint(
(value <= input_df_dict['input_data'].iloc[index].production_capacity)
for index, value in production_variables.items())
"""
# ================== Costs and objective function ==================
total_holding_cost = input_param_dict['holding_cost'] * xp.Sum(inventory_variables)
total_production_cost = xp.Sum(row['production_cost'] * production_variables[index]
for index, row in input_df_dict['input_data'].iterrows())
objective = total_holding_cost + total_production_cost
model.setObjective(objective, sense=xp.minimize)
logger.info(f'Model creation time in sec: {time() - start:.4f}')
# ================== Optimization ==================
if model_params['write_lp']:
logger.info('Writing the lp file!')
model.write(model.name(), 'lp')
logger.info('Optimization starts!')
model.solve()
logger.info(f'status code: {model.getProbStatus()} --> {model.getProbStatusString()}')
# for LP: 1: optimal, 2: infeasible, 5: unbounded. for MIP: 5: infeasible, 6: optimal, 7: unbounded
if model.getProbStatus() == 1:
logger.info(f'The solution is optimal and the objective value is ${model.getObjVal():,.2f}!')
# ================== Output ==================
dict_of_variables = {'production_variables': production_variables,
'inventory_variables': inventory_variables}
output_df = process_data.write_outputs_xpress(dict_of_variables, model)
helper.write_to_csv(output_df)
logger.info('Outputs are written to csv!')