-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathcheckpoint_utils.py
504 lines (430 loc) · 18.4 KB
/
checkpoint_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import collections
import logging
import os
import re
import traceback
from collections import OrderedDict
from typing import Union
import torch
from fairseq.file_io import PathManager
from fairseq.models import FairseqDecoder, FairseqEncoder
from torch.serialization import default_restore_location
logger = logging.getLogger(__name__)
def save_checkpoint(args, trainer, epoch_itr, val_loss):
from fairseq import distributed_utils, meters
# only one worker should attempt to create the required dir
if args.distributed_rank == 0:
os.makedirs(args.save_dir, exist_ok=True)
prev_best = getattr(save_checkpoint, "best", val_loss)
if val_loss is not None:
best_function = max if args.maximize_best_checkpoint_metric else min
save_checkpoint.best = best_function(val_loss, prev_best)
if args.no_save or not trainer.is_data_parallel_master:
return
def is_better(a, b):
return a >= b if args.maximize_best_checkpoint_metric else a <= b
write_timer = meters.StopwatchMeter()
write_timer.start()
epoch = epoch_itr.epoch
end_of_epoch = epoch_itr.end_of_epoch()
updates = trainer.get_num_updates()
suffix = getattr(args, "checkpoint_suffix", "")
checkpoint_conds = collections.OrderedDict()
checkpoint_conds["checkpoint{}{}.pt".format(epoch, suffix)] = (
end_of_epoch
and not args.no_epoch_checkpoints
and epoch % args.save_interval == 0
)
checkpoint_conds["checkpoint_{}_{}{}.pt".format(epoch, updates, suffix)] = (
not end_of_epoch
and args.save_interval_updates > 0
and updates % args.save_interval_updates == 0
)
checkpoint_conds["checkpoint_best{}.pt".format(suffix)] = val_loss is not None and (
not hasattr(save_checkpoint, "best")
or is_better(val_loss, save_checkpoint.best)
)
if val_loss is not None and args.keep_best_checkpoints > 0:
checkpoint_conds["checkpoint.best_{}_{:.2f}.pt".format(
args.best_checkpoint_metric, val_loss)] = (
not hasattr(save_checkpoint, "best")
or is_better(val_loss, save_checkpoint.best)
)
checkpoint_conds["checkpoint_last{}.pt".format(suffix)] = not args.no_last_checkpoints
extra_state = {"train_iterator": epoch_itr.state_dict(), "val_loss": val_loss}
if hasattr(save_checkpoint, "best"):
extra_state.update({"best": save_checkpoint.best})
checkpoints = [
os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond
]
if len(checkpoints) > 0:
trainer.save_checkpoint(checkpoints[0], extra_state)
for cp in checkpoints[1:]:
PathManager.copy(checkpoints[0], cp, overwrite=True)
write_timer.stop()
logger.info(
"saved checkpoint {} (epoch {} @ {} updates, score {}) (writing took {} seconds)".format(
checkpoints[0], epoch, updates, val_loss, write_timer.sum
)
)
if not end_of_epoch and args.keep_interval_updates > 0:
# remove old checkpoints; checkpoints are sorted in descending order
checkpoints = checkpoint_paths(
args.save_dir, pattern=r"checkpoint_\d+_(\d+)\.pt"
)
for old_chk in checkpoints[args.keep_interval_updates :]:
if os.path.lexists(old_chk):
os.remove(old_chk)
if args.keep_last_epochs > 0:
# remove old epoch checkpoints; checkpoints are sorted in descending order
checkpoints = checkpoint_paths(args.save_dir, pattern=r"checkpoint(\d+)\.pt")
for old_chk in checkpoints[args.keep_last_epochs :]:
if os.path.lexists(old_chk):
os.remove(old_chk)
if args.keep_best_checkpoints > 0:
# only keep the best N checkpoints according to validation metric
checkpoints = checkpoint_paths(
args.save_dir, pattern=r"checkpoint\.best_{}_(\d+\.?\d*)\.pt".format(args.best_checkpoint_metric))
if not args.maximize_best_checkpoint_metric:
checkpoints = checkpoints[::-1]
for old_chk in checkpoints[args.keep_best_checkpoints:]:
if os.path.lexists(old_chk):
os.remove(old_chk)
def load_checkpoint(args, trainer, **passthrough_args):
"""
Load a checkpoint and restore the training iterator.
*passthrough_args* will be passed through to
``trainer.get_train_iterator``.
"""
suffix = getattr(args, "checkpoint_suffix", "")
if args.restore_file == "checkpoint_last.pt":
checkpoint_path = os.path.join(args.save_dir, "checkpoint_last{}.pt".format(suffix))
else:
checkpoint_path = args.restore_file
extra_state = trainer.load_checkpoint(
checkpoint_path,
args.reset_optimizer,
args.reset_lr_scheduler,
eval(args.optimizer_overrides),
reset_meters=args.reset_meters,
)
if (
extra_state is not None
and "best" in extra_state
and not args.reset_optimizer
and not args.reset_meters
):
save_checkpoint.best = extra_state["best"]
if extra_state is not None and not args.reset_dataloader:
# restore iterator from checkpoint
itr_state = extra_state["train_iterator"]
epoch_itr = trainer.get_train_iterator(
epoch=itr_state["epoch"], load_dataset=True, **passthrough_args
)
epoch_itr.load_state_dict(itr_state)
else:
epoch_itr = trainer.get_train_iterator(
epoch=1, load_dataset=True, **passthrough_args
)
trainer.lr_step(epoch_itr.epoch)
return extra_state, epoch_itr
def load_checkpoint_to_cpu(path, arg_overrides=None):
"""Loads a checkpoint to CPU (with upgrading for backward compatibility)."""
with PathManager.open(path, "rb") as f:
state = torch.load(
f, map_location=lambda s, l: default_restore_location(s, "cpu")
)
args = state["args"]
if arg_overrides is not None:
for arg_name, arg_val in arg_overrides.items():
setattr(args, arg_name, arg_val)
state = _upgrade_state_dict(state)
return state
def load_model_ensemble(filenames, arg_overrides=None, task=None, strict=True, suffix=''):
"""Loads an ensemble of models.
Args:
filenames (List[str]): checkpoint files to load
arg_overrides (Dict[str,Any], optional): override model args that
were used during model training
task (fairseq.tasks.FairseqTask, optional): task to use for loading
"""
ensemble, args, _task = load_model_ensemble_and_task(
filenames, arg_overrides, task, strict, suffix,
)
return ensemble, args
def load_model_ensemble_and_task(filenames, arg_overrides=None, task=None, strict=True, suffix=''):
from fairseq import tasks
ensemble = []
for filename in filenames:
filename = filename.replace(".pt", suffix + ".pt")
if not PathManager.exists(filename):
raise IOError("Model file not found: {}".format(filename))
state = load_checkpoint_to_cpu(filename, arg_overrides)
args = state["args"]
if task is None:
task = tasks.setup_task(args)
# build model for ensemble
model = task.build_model(args)
model.load_state_dict(state["model"], strict=strict, args=args)
ensemble.append(model)
return ensemble, args, task
def checkpoint_paths(path, pattern=r"checkpoint(\d+)\.pt"):
"""Retrieves all checkpoints found in `path` directory.
Checkpoints are identified by matching filename to the specified pattern. If
the pattern contains groups, the result will be sorted by the first group in
descending order.
"""
pt_regexp = re.compile(pattern)
files = os.listdir(path)
entries = []
for i, f in enumerate(files):
m = pt_regexp.fullmatch(f)
if m is not None:
idx = float(m.group(1)) if len(m.groups()) > 0 else i
entries.append((idx, m.group(0)))
return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)]
def torch_persistent_save(*args, **kwargs):
for i in range(3):
try:
return torch.save(*args, **kwargs)
except Exception:
if i == 2:
logger.error(traceback.format_exc())
def convert_state_dict_type(state_dict, ttype=torch.FloatTensor):
if isinstance(state_dict, dict):
cpu_dict = OrderedDict()
for k, v in state_dict.items():
cpu_dict[k] = convert_state_dict_type(v)
return cpu_dict
elif isinstance(state_dict, list):
return [convert_state_dict_type(v) for v in state_dict]
elif torch.is_tensor(state_dict):
return state_dict.type(ttype)
else:
return state_dict
def save_state(
filename,
args,
model_state_dict,
criterion,
optimizer,
lr_scheduler,
num_updates,
optim_history=None,
extra_state=None,
):
from fairseq import utils
if optim_history is None:
optim_history = []
if extra_state is None:
extra_state = {}
state_dict = {
"args": args,
"model": convert_state_dict_type(model_state_dict) if model_state_dict else {},
"optimizer_history": optim_history
+ [
{
"criterion_name": criterion.__class__.__name__,
"optimizer_name": optimizer.__class__.__name__,
"lr_scheduler_state": lr_scheduler.state_dict(),
"num_updates": num_updates,
}
],
"extra_state": extra_state,
}
if utils.has_parameters(criterion):
state_dict["criterion"] = criterion.state_dict()
if not args.no_save_optimizer_state:
state_dict["last_optimizer_state"] = convert_state_dict_type(
optimizer.state_dict()
)
with PathManager.open(filename, "wb") as f:
torch_persistent_save(state_dict, f)
def _upgrade_state_dict(state):
"""Helper for upgrading old model checkpoints."""
from fairseq import models, registry, tasks
# add optimizer_history
if "optimizer_history" not in state:
state["optimizer_history"] = [
{"criterion_name": "CrossEntropyCriterion", "best_loss": state["best_loss"]}
]
state["last_optimizer_state"] = state["optimizer"]
del state["optimizer"]
del state["best_loss"]
# move extra_state into sub-dictionary
if "epoch" in state and "extra_state" not in state:
state["extra_state"] = {
"epoch": state["epoch"],
"batch_offset": state["batch_offset"],
"val_loss": state["val_loss"],
}
del state["epoch"]
del state["batch_offset"]
del state["val_loss"]
# reduce optimizer history's memory usage (only keep the last state)
if "optimizer" in state["optimizer_history"][-1]:
state["last_optimizer_state"] = state["optimizer_history"][-1]["optimizer"]
for optim_hist in state["optimizer_history"]:
del optim_hist["optimizer"]
# record the optimizer class name
if "optimizer_name" not in state["optimizer_history"][-1]:
state["optimizer_history"][-1]["optimizer_name"] = "FairseqNAG"
# move best_loss into lr_scheduler_state
if "lr_scheduler_state" not in state["optimizer_history"][-1]:
state["optimizer_history"][-1]["lr_scheduler_state"] = {
"best": state["optimizer_history"][-1]["best_loss"]
}
del state["optimizer_history"][-1]["best_loss"]
# keep track of number of updates
if "num_updates" not in state["optimizer_history"][-1]:
state["optimizer_history"][-1]["num_updates"] = 0
# old model checkpoints may not have separate source/target positions
if hasattr(state["args"], "max_positions") and not hasattr(
state["args"], "max_source_positions"
):
state["args"].max_source_positions = state["args"].max_positions
state["args"].max_target_positions = state["args"].max_positions
# use stateful training data iterator
if "train_iterator" not in state["extra_state"]:
state["extra_state"]["train_iterator"] = {
"epoch": state["extra_state"]["epoch"],
"iterations_in_epoch": state["extra_state"].get("batch_offset", 0),
}
# default to translation task
if not hasattr(state["args"], "task"):
state["args"].task = "translation"
# --raw-text and --lazy-load are deprecated
if getattr(state["args"], "raw_text", False):
state["args"].dataset_impl = "raw"
elif getattr(state["args"], "lazy_load", False):
state["args"].dataset_impl = "lazy"
# epochs start at 1
if state["extra_state"]["train_iterator"] is not None:
state["extra_state"]["train_iterator"]["epoch"] = max(
state["extra_state"]["train_iterator"].get("epoch", 1),
1,
)
# set any missing default values in the task, model or other registries
registry.set_defaults(state["args"], tasks.TASK_REGISTRY[state["args"].task])
registry.set_defaults(state["args"], models.ARCH_MODEL_REGISTRY[state["args"].arch])
for registry_name, REGISTRY in registry.REGISTRIES.items():
choice = getattr(state["args"], registry_name, None)
if choice is not None:
cls = REGISTRY["registry"][choice]
registry.set_defaults(state["args"], cls)
return state
def prune_state_dict(state_dict, args):
"""Prune the given state_dict if desired for LayerDrop
(https://arxiv.org/abs/1909.11556).
Training with LayerDrop allows models to be robust to pruning at inference
time. This function prunes state_dict to allow smaller models to be loaded
from a larger model and re-maps the existing state_dict for this to occur.
It's called by functions that load models from checkpoints and does not
need to be called directly.
"""
if not args or args.arch == "ptt_transformer":
# args should not be none, but don't crash if it is.
return state_dict
encoder_layers_to_keep = (
args.encoder_layers_to_keep if "encoder_layers_to_keep" in vars(args) else None
)
decoder_layers_to_keep = (
args.decoder_layers_to_keep if "decoder_layers_to_keep" in vars(args) else None
)
if not encoder_layers_to_keep and not decoder_layers_to_keep:
return state_dict
# apply pruning
logger.info(
"Pruning model to specified layer configuration - this works best if the model was trained with LayerDrop"
)
def create_pruning_pass(layers_to_keep, layer_name):
keep_layers = sorted(
[int(layer_string) for layer_string in layers_to_keep.split(",")]
)
mapping_dict = {}
for i in range(len(keep_layers)):
mapping_dict[str(keep_layers[i])] = str(i)
regex = re.compile("^{layer}.*\.layers\.(\d+)".format(layer=layer_name))
return {"substitution_regex": regex, "mapping_dict": mapping_dict}
pruning_passes = []
if encoder_layers_to_keep:
pruning_passes.append(create_pruning_pass(encoder_layers_to_keep, "encoder"))
if decoder_layers_to_keep:
pruning_passes.append(create_pruning_pass(decoder_layers_to_keep, "decoder"))
new_state_dict = {}
for layer_name in state_dict.keys():
match = re.search("\.layers\.(\d+)\.", layer_name)
# if layer has no number in it, it is a supporting layer, such as an
# embedding
if not match:
new_state_dict[layer_name] = state_dict[layer_name]
continue
# otherwise, layer should be pruned.
original_layer_number = match.group(1)
# figure out which mapping dict to replace from
for pruning_pass in pruning_passes:
if original_layer_number in pruning_pass["mapping_dict"] and pruning_pass[
"substitution_regex"
].search(layer_name):
new_layer_number = pruning_pass["mapping_dict"][original_layer_number]
substitution_match = pruning_pass["substitution_regex"].search(
layer_name
)
new_state_key = (
layer_name[: substitution_match.start(1)]
+ new_layer_number
+ layer_name[substitution_match.end(1) :]
)
new_state_dict[new_state_key] = state_dict[layer_name]
# Since layers are now pruned, *_layers_to_keep are no longer needed.
# This is more of "It would make it work fix" rather than a proper fix.
if "encoder_layers_to_keep" in vars(args):
args.encoder_layers_to_keep = None
if "decoder_layers_to_keep" in vars(args):
args.decoder_layers_to_keep = None
return new_state_dict
def load_pretrained_component_from_model(
component: Union[FairseqEncoder, FairseqDecoder], checkpoint: str
):
"""
Load a pretrained FairseqEncoder or FairseqDecoder from checkpoint into the
provided `component` object. If state_dict fails to load, there may be a
mismatch in the architecture of the corresponding `component` found in the
`checkpoint` file.
"""
if not PathManager.exists(checkpoint):
raise IOError("Model file not found: {}".format(checkpoint))
state = load_checkpoint_to_cpu(checkpoint)
if isinstance(component, FairseqEncoder):
component_type = "encoder"
elif isinstance(component, FairseqDecoder):
component_type = "decoder"
else:
raise ValueError(
"component to load must be either a FairseqEncoder or "
"FairseqDecoder. Loading other component types are not supported."
)
component_state_dict = OrderedDict()
for key in state["model"].keys():
if key.startswith(component_type):
# encoder.input_layers.0.0.weight --> input_layers.0.0.weight
component_subkey = key[len(component_type) + 1 :]
component_state_dict[component_subkey] = state["model"][key]
component.load_state_dict(component_state_dict, strict=True)
return component
def verify_checkpoint_directory(save_dir: str) -> None:
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
temp_file_path = os.path.join(save_dir, "dummy")
try:
with open(temp_file_path, "w"):
pass
except OSError as e:
logger.warning("Unable to access checkpoint save directory: {}".format(save_dir))
raise e
else:
os.remove(temp_file_path)