-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutil.py
48 lines (40 loc) · 1.42 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import logging
from torch.utils.data import DataLoader
from packaging.version import Version
from datasets.re10k import Re10KDataset
from datasets.nyu.dataset import NYUv2Dataset
from datasets.kitti import KITTIDataset
def create_datasets(cfg, split="val"):
datasets_dict = {
"re10k": Re10KDataset,
"nyuv2": NYUv2Dataset,
"kitti": KITTIDataset,
}[cfg.dataset.name]
dataset = datasets_dict(cfg, split=split)
logging.info("There are {:d} {} items\n".format(len(dataset), split)
)
shuffle = True if split == "train" else False
data_loader = DataLoader(
dataset,
cfg.data_loader.batch_size,
shuffle=shuffle,
num_workers=cfg.data_loader.num_workers,
pin_memory=True,
drop_last=shuffle,
collate_fn=custom_collate,
)
return dataset, data_loader
if Version(torch.__version__) < Version("1.11"):
from torch.utils.data._utils.collate import default_collate
else:
from torch.utils.data import default_collate
def custom_collate(batch):
all_keys = batch[0].keys()
dense_keys = [k for k in all_keys if "sparse" not in k[0]]
sparse_keys = [k for k in all_keys if "sparse" in k[0]]
dense_batch = [{k: b[k] for k in dense_keys} for b in batch]
sparse_batch = {k: [b[k] for b in batch] for k in sparse_keys}
dense_batch = default_collate(dense_batch)
batch = sparse_batch | dense_batch
return batch