Skip to content

Latest commit

 

History

History
executable file
·
71 lines (51 loc) · 2.37 KB

README.md

File metadata and controls

executable file
·
71 lines (51 loc) · 2.37 KB

DeepSIM

Official PyTorch implementation of the paper: "Deep Single Image Manipulation".

Results

SuperPrimitive2Image

Image2VideoFrames

Getting Started

Training

  • Train a model at 640 x 640 resolution (bash ./scripts/train.sh):
#!./scripts/train.sh
python3.7 train.py --dataroot ./datasets/face --name DeepSIM --niter 8000 --niter_decay 8000 --label_nc 0 --no_instance --resize_or_crop none --tps_aug 1 --apply_binary_threshold 1 --resize_or_crop none --loadSize 640 --fineSize 640
  • To view training results, please checkout intermediate results in ./checkpoints/DeepSIM/web/index.html.

Training with your own dataset

  • For binary training images (i.e. edge maps) use --apply_binary_threshold 1, to ensure that the edges input is indeed binary (during both training and inference), for segmentation maps use --apply_binary_threshold 0, you may also use --edge_threshold to control the threshold.
  • For TPS augmentations use --tps_aug 1, this will train the image with a new random TPS warp every epoch.
  • See options/train_options.py and options/base_options.py for all the training flags; see options/test_options.py and options/base_options.py for all the test flags. See pix2pixHD for further details.

Testing

  • Test the model (bash ./scripts/test.sh):
#!./scripts/test.sh
python3.7 test.py --dataroot ./datasets/face --name DeepSIM --label_nc 0 --no_instance --resize_or_crop none --apply_binary_threshold 1 --online_tps 0 --no_instance --loadSize 640 --fineSize 640

The test results will be saved to a html file here: ./results/DeepSIM/test_latest/index.html.

More example scripts can be found in the scripts directory.

Citation

If you find this useful for your research, please use the following.

@misc{vinker2020deep,
    title={Deep Single Image Manipulation},
    author={Yael Vinker and Eliahu Horwitz and Nir Zabari and Yedid Hoshen},
    year={2020},
    eprint={2007.01289},
    archivePrefix={arXiv},
}

Acknowledgments

This code borrows heavily from pix2pixHD.