forked from flutter/engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstrumentation.cc
314 lines (260 loc) · 9.87 KB
/
instrumentation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright 2013 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "flutter/flow/instrumentation.h"
#include <algorithm>
#include <limits>
#include "third_party/skia/include/core/SkPath.h"
#include "third_party/skia/include/core/SkSurface.h"
namespace flow {
static const size_t kMaxSamples = 120;
static const size_t kMaxFrameMarkers = 8;
Stopwatch::Stopwatch() : start_(fml::TimePoint::Now()), current_sample_(0) {
const fml::TimeDelta delta = fml::TimeDelta::Zero();
laps_.resize(kMaxSamples, delta);
cache_dirty_ = true;
prev_drawn_sample_index_ = 0;
}
Stopwatch::~Stopwatch() = default;
void Stopwatch::Start() {
start_ = fml::TimePoint::Now();
current_sample_ = (current_sample_ + 1) % kMaxSamples;
}
void Stopwatch::Stop() {
laps_[current_sample_] = fml::TimePoint::Now() - start_;
}
void Stopwatch::SetLapTime(const fml::TimeDelta& delta) {
current_sample_ = (current_sample_ + 1) % kMaxSamples;
laps_[current_sample_] = delta;
}
const fml::TimeDelta& Stopwatch::LastLap() const {
return laps_[(current_sample_ - 1) % kMaxSamples];
}
static inline constexpr double UnitFrameInterval(double frame_time_ms) {
return frame_time_ms * 60.0 * 1e-3;
}
static inline double UnitHeight(double frame_time_ms,
double max_unit_interval) {
double unitHeight = UnitFrameInterval(frame_time_ms) / max_unit_interval;
if (unitHeight > 1.0)
unitHeight = 1.0;
return unitHeight;
}
fml::TimeDelta Stopwatch::MaxDelta() const {
fml::TimeDelta max_delta;
for (size_t i = 0; i < kMaxSamples; i++) {
if (laps_[i] > max_delta)
max_delta = laps_[i];
}
return max_delta;
}
fml::TimeDelta Stopwatch::AverageDelta() const {
fml::TimeDelta sum; // default to 0
for (size_t i = 0; i < kMaxSamples; i++) {
sum = sum + laps_[i];
}
return sum / kMaxSamples;
}
// Initialize the SkSurface for drawing into. Draws the base background and any
// timing data from before the initial Visualize() call.
void Stopwatch::InitVisualizeSurface(const SkRect& rect) const {
if (!cache_dirty_) {
return;
}
cache_dirty_ = false;
// TODO(garyq): Use a GPU surface instead of a CPU surface.
visualize_cache_surface_ =
SkSurface::MakeRasterN32Premul(rect.width(), rect.height());
SkCanvas* cache_canvas = visualize_cache_surface_->getCanvas();
// Establish the graph position.
const SkScalar x = 0;
const SkScalar y = 0;
const SkScalar width = rect.width();
const SkScalar height = rect.height();
SkPaint paint;
paint.setColor(0x99FFFFFF);
cache_canvas->drawRect(SkRect::MakeXYWH(x, y, width, height), paint);
// Scale the graph to show frame times up to those that are 3 times the frame
// time.
const double max_interval = kOneFrameMS * 3.0;
const double max_unit_interval = UnitFrameInterval(max_interval);
// Draw the old data to initially populate the graph.
// Prepare a path for the data. We start at the height of the last point, so
// it looks like we wrap around
SkPath path;
path.setIsVolatile(true);
path.moveTo(x, height);
path.lineTo(x, y + height * (1.0 - UnitHeight(laps_[0].ToMillisecondsF(),
max_unit_interval)));
double unit_x;
double unit_next_x = 0.0;
for (size_t i = 0; i < kMaxSamples; i += 1) {
unit_x = unit_next_x;
unit_next_x = (static_cast<double>(i + 1) / kMaxSamples);
const double sample_y =
y + height * (1.0 - UnitHeight(laps_[i].ToMillisecondsF(),
max_unit_interval));
path.lineTo(x + width * unit_x, sample_y);
path.lineTo(x + width * unit_next_x, sample_y);
}
path.lineTo(
width,
y + height * (1.0 - UnitHeight(laps_[kMaxSamples - 1].ToMillisecondsF(),
max_unit_interval)));
path.lineTo(width, height);
path.close();
// Draw the graph.
paint.setColor(0xAA0000FF);
cache_canvas->drawPath(path, paint);
}
void Stopwatch::Visualize(SkCanvas& canvas, const SkRect& rect) const {
// Initialize visualize cache if it has not yet been initialized.
InitVisualizeSurface(rect);
SkCanvas* cache_canvas = visualize_cache_surface_->getCanvas();
SkPaint paint;
// Establish the graph position.
const SkScalar x = 0;
const SkScalar y = 0;
const SkScalar width = rect.width();
const SkScalar height = rect.height();
// Scale the graph to show frame times up to those that are 3 times the frame
// time.
const double max_interval = kOneFrameMS * 3.0;
const double max_unit_interval = UnitFrameInterval(max_interval);
const double sample_unit_width = (1.0 / kMaxSamples);
// Draw vertical replacement bar to erase old/stale pixels.
paint.setColor(0x99FFFFFF);
paint.setStyle(SkPaint::Style::kFill_Style);
paint.setBlendMode(SkBlendMode::kSrc);
double sample_x =
x + width * (static_cast<double>(prev_drawn_sample_index_) / kMaxSamples);
const auto eraser_rect = SkRect::MakeLTRB(
sample_x, y, sample_x + width * sample_unit_width, height);
cache_canvas->drawRect(eraser_rect, paint);
// Draws blue timing bar for new data.
paint.setColor(0xAA0000FF);
paint.setBlendMode(SkBlendMode::kSrcOver);
const auto bar_rect = SkRect::MakeLTRB(
sample_x,
y + height * (1.0 -
UnitHeight(laps_[current_sample_ == 0 ? kMaxSamples - 1
: current_sample_ - 1]
.ToMillisecondsF(),
max_unit_interval)),
sample_x + width * sample_unit_width, height);
cache_canvas->drawRect(bar_rect, paint);
// Draw horizontal frame markers.
paint.setStrokeWidth(0); // hairline
paint.setStyle(SkPaint::Style::kStroke_Style);
paint.setColor(0xCC000000);
if (max_interval > kOneFrameMS) {
// Paint the horizontal markers
size_t frame_marker_count = static_cast<size_t>(max_interval / kOneFrameMS);
// Limit the number of markers displayed. After a certain point, the graph
// becomes crowded
if (frame_marker_count > kMaxFrameMarkers)
frame_marker_count = 1;
for (size_t frame_index = 0; frame_index < frame_marker_count;
frame_index++) {
const double frame_height =
height * (1.0 - (UnitFrameInterval((frame_index + 1) * kOneFrameMS) /
max_unit_interval));
cache_canvas->drawLine(x, y + frame_height, width, y + frame_height,
paint);
}
}
// Paint the vertical marker for the current frame.
// We paint it over the current frame, not after it, because when we
// paint this we don't yet have all the times for the current frame.
paint.setStyle(SkPaint::Style::kFill_Style);
paint.setBlendMode(SkBlendMode::kSrcOver);
if (UnitFrameInterval(LastLap().ToMillisecondsF()) > 1.0) {
// budget exceeded
paint.setColor(SK_ColorRED);
} else {
// within budget
paint.setColor(SK_ColorGREEN);
}
sample_x = x + width * (static_cast<double>(current_sample_) / kMaxSamples);
const auto marker_rect = SkRect::MakeLTRB(
sample_x, y, sample_x + width * sample_unit_width, height);
cache_canvas->drawRect(marker_rect, paint);
prev_drawn_sample_index_ = current_sample_;
// Draw the cached surface onto the output canvas.
paint.reset();
visualize_cache_surface_->draw(&canvas, rect.x(), rect.y(), &paint);
}
CounterValues::CounterValues() : current_sample_(kMaxSamples - 1) {
values_.resize(kMaxSamples, 0);
}
CounterValues::~CounterValues() = default;
void CounterValues::Add(int64_t value) {
current_sample_ = (current_sample_ + 1) % kMaxSamples;
values_[current_sample_] = value;
}
void CounterValues::Visualize(SkCanvas& canvas, const SkRect& rect) const {
size_t max_bytes = GetMaxValue();
if (max_bytes == 0) {
// The backend for this counter probably did not fill in any values.
return;
}
size_t min_bytes = GetMinValue();
SkPaint paint;
// Paint the background.
paint.setColor(0x99FFFFFF);
canvas.drawRect(rect, paint);
// Establish the graph position.
const SkScalar x = rect.x();
const SkScalar y = rect.y();
const SkScalar width = rect.width();
const SkScalar height = rect.height();
const SkScalar bottom = y + height;
const SkScalar right = x + width;
// Prepare a path for the data.
SkPath path;
path.moveTo(x, bottom);
for (size_t i = 0; i < kMaxSamples; ++i) {
int64_t current_bytes = values_[i];
double ratio =
(double)(current_bytes - min_bytes) / (max_bytes - min_bytes);
path.lineTo(x + (((double)(i) / (double)kMaxSamples) * width),
y + ((1.0 - ratio) * height));
}
path.rLineTo(100, 0);
path.lineTo(right, bottom);
path.close();
// Draw the graph.
paint.setColor(0xAA0000FF);
canvas.drawPath(path, paint);
// Paint the vertical marker for the current frame.
const double sample_unit_width = (1.0 / kMaxSamples);
const double sample_margin_unit_width = sample_unit_width / 6.0;
const double sample_margin_width = width * sample_margin_unit_width;
paint.setStyle(SkPaint::Style::kFill_Style);
paint.setColor(SK_ColorGRAY);
double sample_x =
x + width * (static_cast<double>(current_sample_) / kMaxSamples) -
sample_margin_width;
const auto marker_rect = SkRect::MakeLTRB(
sample_x, y,
sample_x + width * sample_unit_width + sample_margin_width * 2, bottom);
canvas.drawRect(marker_rect, paint);
}
int64_t CounterValues::GetCurrentValue() const {
return values_[current_sample_];
}
int64_t CounterValues::GetMaxValue() const {
auto max = std::numeric_limits<int64_t>::min();
for (size_t i = 0; i < kMaxSamples; ++i) {
max = std::max<int64_t>(max, values_[i]);
}
return max;
}
int64_t CounterValues::GetMinValue() const {
auto min = std::numeric_limits<int64_t>::max();
for (size_t i = 0; i < kMaxSamples; ++i) {
min = std::min<int64_t>(min, values_[i]);
}
return min;
}
} // namespace flow