-
Notifications
You must be signed in to change notification settings - Fork 357
/
Copy pathArray.elm
1004 lines (832 loc) · 29.4 KB
/
Array.elm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
module Array
exposing
( Array
, empty
, isEmpty
, length
, initialize
, repeat
, fromList
, get
, set
, push
, toList
, toIndexedList
, foldr
, foldl
, filter
, map
, indexedMap
, append
, slice
)
{-| Fast immutable arrays. The elements in an array must have the same type.
# Arrays
@docs Array
# Creation
@docs empty, initialize, repeat, fromList
# Query
@docs isEmpty, length, get
# Manipulate
@docs set, push, append, slice
# Lists
@docs toList, toIndexedList
# Transform
@docs map, indexedMap, foldl, foldr, filter
-}
import Basics exposing (..)
import Bitwise
import Elm.JsArray as JsArray exposing (JsArray)
import List exposing ((::))
import Maybe exposing (..)
import Tuple
{-| The array in this module is implemented as a tree with a high branching
factor (number of elements at each level). In comparision, the `Dict` has
a branching factor of 2 (left or right).
The higher the branching factor, the more elements are stored at each level.
This makes writes slower (more to copy per level), but reads faster
(fewer traversals). In practice, 32 is a good compromise.
The branching factor has to be a power of two (8, 16, 32, 64...). This is
because we use the index to tell us which path to take when navigating the
tree, and we do this by dividing it into several smaller numbers (see
`shiftStep` documentation). By dividing the index into smaller numbers, we
will always get a range which is a power of two (2 bits gives 0-3, 3 gives
0-7, 4 gives 0-15...).
-}
branchFactor : Int
branchFactor =
32
{-| A number is made up of several bits. For bitwise operations in javascript,
numbers are treated as 32-bits integers. The number 1 is represented by 31
zeros, and a one. The important thing to take from this, is that a 32-bit
integer has enough information to represent several smaller numbers.
For a branching factor of 32, a 32-bit index has enough information to store 6
different numbers in the range of 0-31 (5 bits), and one number in the range of
0-3 (2 bits). This means that the tree of an array can have, at most, a depth
of 7.
An index essentially functions as a map. To figure out which branch to take at
any given level of the tree, we need to shift (or move) the correct amount of
bits so that those bits are at the front. We can then perform a bitwise and to
read which of the 32 branches to take.
The `shiftStep` specifices how many bits are required to represent the branching
factor.
-}
shiftStep : Int
shiftStep =
ceiling (logBase 2 (toFloat branchFactor))
{-| A mask which, when used in a bitwise and, reads the first `shiftStep` bits
in a number as a number of its own.
-}
bitMask : Int
bitMask =
Bitwise.shiftRightZfBy (32 - shiftStep) 0xFFFFFFFF
{-| Representation of fast immutable arrays. You can create arrays of integers
(`Array Int`) or strings (`Array String`) or any other type of value you can
dream up.
-}
type Array a
= {-
* length : Int = The length of the array.
* startShift : Int = How many bits to shift the index to get the
slot for the first level of the tree.
* tree : Tree a = The actual tree.
* tail : JsArray a = The tail of the array. Inserted into tree when
number of elements is equal to the branching factor. This is an
optimization. It makes operations at the end (push, pop, read, write)
fast.
-}
Array_elm_builtin Int Int (Tree a) (JsArray a)
{-| Each level in the tree is represented by a `JsArray` of `Node`s.
A `Node` can either be a subtree (the next level of the tree) or, if
we're at the bottom, a `JsArray` of values (also known as a leaf).
-}
type Node a
= SubTree (Tree a)
| Leaf (JsArray a)
type alias Tree a =
JsArray (Node a)
{-| Return an empty array.
length empty == 0
-}
empty : Array a
empty =
{-
`startShift` is only used when there is at least one `Node` in the
`tree`. The minimal value is therefore equal to the `shiftStep`.
-}
Array_elm_builtin 0 shiftStep JsArray.empty JsArray.empty
{-| Determine if an array is empty.
isEmpty empty == True
-}
isEmpty : Array a -> Bool
isEmpty (Array_elm_builtin len _ _ _) =
len == 0
{-| Return the length of an array.
length (fromList [1,2,3]) == 3
-}
length : Array a -> Int
length (Array_elm_builtin len _ _ _) =
len
{-| Initialize an array. `initialize n f` creates an array of length `n` with
the element at index `i` initialized to the result of `(f i)`.
initialize 4 identity == fromList [0,1,2,3]
initialize 4 (\n -> n*n) == fromList [0,1,4,9]
initialize 4 (always 0) == fromList [0,0,0,0]
-}
initialize : Int -> (Int -> a) -> Array a
initialize len fn =
if len <= 0 then
empty
else
let
tailLen =
remainderBy branchFactor len
tail =
JsArray.initialize tailLen (len - tailLen) fn
initialFromIndex =
len - tailLen - branchFactor
in
initializeHelp fn initialFromIndex len [] tail
initializeHelp : (Int -> a) -> Int -> Int -> List (Node a) -> JsArray a -> Array a
initializeHelp fn fromIndex len nodeList tail =
if fromIndex < 0 then
builderToArray False
{ tail = tail
, nodeList = nodeList
, nodeListSize = len // branchFactor
}
else
let
leaf =
Leaf <| JsArray.initialize branchFactor fromIndex fn
in
initializeHelp
fn
(fromIndex - branchFactor)
len
(leaf :: nodeList)
tail
{-| Creates an array with a given length, filled with a default element.
repeat 5 0 == fromList [0,0,0,0,0]
repeat 3 "cat" == fromList ["cat","cat","cat"]
Notice that `repeat 3 x` is the same as `initialize 3 (always x)`.
-}
repeat : Int -> a -> Array a
repeat n e =
initialize n (\_ -> e)
{-| Create an array from a `List`.
-}
fromList : List a -> Array a
fromList list =
case list of
[] ->
empty
_ ->
fromListHelp list [] 0
fromListHelp : List a -> List (Node a) -> Int -> Array a
fromListHelp list nodeList nodeListSize =
let
( jsArray, remainingItems ) =
JsArray.initializeFromList branchFactor list
in
if JsArray.length jsArray < branchFactor then
builderToArray True
{ tail = jsArray
, nodeList = nodeList
, nodeListSize = nodeListSize
}
else
fromListHelp
remainingItems
(Leaf jsArray :: nodeList)
(nodeListSize + 1)
{-| Return `Just` the element at the index or `Nothing` if the index is out of
range.
get 0 (fromList [0,1,2]) == Just 0
get 2 (fromList [0,1,2]) == Just 2
get 5 (fromList [0,1,2]) == Nothing
get -1 (fromList [0,1,2]) == Nothing
-}
get : Int -> Array a -> Maybe a
get index (Array_elm_builtin len startShift tree tail) =
if index < 0 || index >= len then
Nothing
else if index >= tailIndex len then
Just <| JsArray.unsafeGet (Bitwise.and bitMask index) tail
else
Just <| getHelp startShift index tree
getHelp : Int -> Int -> Tree a -> a
getHelp shift index tree =
let
pos =
Bitwise.and bitMask <| Bitwise.shiftRightZfBy shift index
in
case JsArray.unsafeGet pos tree of
SubTree subTree ->
getHelp (shift - shiftStep) index subTree
Leaf values ->
JsArray.unsafeGet (Bitwise.and bitMask index) values
{-| Given an array length, return the index of the first element in the tail.
Commonly used to check if a given index references something in the tail.
-}
tailIndex : Int -> Int
tailIndex len =
len
|> Bitwise.shiftRightZfBy 5
|> Bitwise.shiftLeftBy 5
{-| Set the element at a particular index. Returns an updated array.
If the index is out of range, the array is unaltered.
set 1 7 (fromList [1,2,3]) == fromList [1,7,3]
-}
set : Int -> a -> Array a -> Array a
set index value ((Array_elm_builtin len startShift tree tail) as array) =
if index < 0 || index >= len then
array
else if index >= tailIndex len then
Array_elm_builtin len startShift tree <|
JsArray.unsafeSet (Bitwise.and bitMask index) value tail
else
Array_elm_builtin
len
startShift
(setHelp startShift index value tree)
tail
setHelp : Int -> Int -> a -> Tree a -> Tree a
setHelp shift index value tree =
let
pos =
Bitwise.and bitMask <| Bitwise.shiftRightZfBy shift index
in
case JsArray.unsafeGet pos tree of
SubTree subTree ->
let
newSub =
setHelp (shift - shiftStep) index value subTree
in
JsArray.unsafeSet pos (SubTree newSub) tree
Leaf values ->
let
newLeaf =
JsArray.unsafeSet (Bitwise.and bitMask index) value values
in
JsArray.unsafeSet pos (Leaf newLeaf) tree
{-| Push an element onto the end of an array.
push 3 (fromList [1,2]) == fromList [1,2,3]
-}
push : a -> Array a -> Array a
push a ((Array_elm_builtin _ _ _ tail) as array) =
unsafeReplaceTail (JsArray.push a tail) array
{-| Replaces the tail of an array. If the length of the tail equals the
`branchFactor`, it is inserted into the tree, and the tail cleared.
WARNING: For performance reasons, this function does not check if the new tail
has a length equal to or beneath the `branchFactor`. Make sure this is the case
before using this function.
-}
unsafeReplaceTail : JsArray a -> Array a -> Array a
unsafeReplaceTail newTail (Array_elm_builtin len startShift tree tail) =
let
originalTailLen =
JsArray.length tail
newTailLen =
JsArray.length newTail
newArrayLen =
len + (newTailLen - originalTailLen)
in
if newTailLen == branchFactor then
let
overflow =
Bitwise.shiftRightZfBy shiftStep newArrayLen > Bitwise.shiftLeftBy startShift 1
in
if overflow then
let
newShift =
startShift + shiftStep
newTree =
JsArray.singleton (SubTree tree)
|> insertTailInTree newShift len newTail
in
Array_elm_builtin
newArrayLen
newShift
newTree
JsArray.empty
else
Array_elm_builtin
newArrayLen
startShift
(insertTailInTree startShift len newTail tree)
JsArray.empty
else
Array_elm_builtin
newArrayLen
startShift
tree
newTail
insertTailInTree : Int -> Int -> JsArray a -> Tree a -> Tree a
insertTailInTree shift index tail tree =
let
pos =
Bitwise.and bitMask <| Bitwise.shiftRightZfBy shift index
in
if pos >= JsArray.length tree then
if shift == 5 then
JsArray.push (Leaf tail) tree
else
let
newSub =
JsArray.empty
|> insertTailInTree (shift - shiftStep) index tail
|> SubTree
in
JsArray.push newSub tree
else
let
value =
JsArray.unsafeGet pos tree
in
case value of
SubTree subTree ->
let
newSub =
subTree
|> insertTailInTree (shift - shiftStep) index tail
|> SubTree
in
JsArray.unsafeSet pos newSub tree
Leaf _ ->
let
newSub =
JsArray.singleton value
|> insertTailInTree (shift - shiftStep) index tail
|> SubTree
in
JsArray.unsafeSet pos newSub tree
{-| Create a list of elements from an array.
toList (fromList [3,5,8]) == [3,5,8]
-}
toList : Array a -> List a
toList array =
foldr (::) [] array
{-| Create an indexed list from an array. Each element of the array will be
paired with its index.
toIndexedList (fromList ["cat","dog"]) == [(0,"cat"), (1,"dog")]
-}
toIndexedList : Array a -> List ( Int, a )
toIndexedList ((Array_elm_builtin len _ _ _) as array) =
let
helper entry ( index, list ) =
( index - 1, (index,entry) :: list )
in
Tuple.second (foldr helper ( len - 1, [] ) array)
{-| Reduce an array from the right. Read `foldr` as fold from the right.
foldr (+) 0 (repeat 3 5) == 15
-}
foldr : (a -> b -> b) -> b -> Array a -> b
foldr func baseCase (Array_elm_builtin _ _ tree tail) =
let
helper node acc =
case node of
SubTree subTree ->
JsArray.foldr helper acc subTree
Leaf values ->
JsArray.foldr func acc values
in
JsArray.foldr helper (JsArray.foldr func baseCase tail) tree
{-| Reduce an array from the left. Read `foldl` as fold from the left.
foldl (::) [] (fromList [1,2,3]) == [3,2,1]
-}
foldl : (a -> b -> b) -> b -> Array a -> b
foldl func baseCase (Array_elm_builtin _ _ tree tail) =
let
helper node acc =
case node of
SubTree subTree ->
JsArray.foldl helper acc subTree
Leaf values ->
JsArray.foldl func acc values
in
JsArray.foldl func (JsArray.foldl helper baseCase tree) tail
{-| Keep elements that pass the test.
filter isEven (fromList [1,2,3,4,5,6]) == (fromList [2,4,6])
-}
filter : (a -> Bool) -> Array a -> Array a
filter isGood array =
fromList (foldr (\x xs -> if isGood x then x :: xs else xs) [] array)
{-| Apply a function on every element in an array.
map sqrt (fromList [1,4,9]) == fromList [1,2,3]
-}
map : (a -> b) -> Array a -> Array b
map func (Array_elm_builtin len startShift tree tail) =
let
helper node =
case node of
SubTree subTree ->
SubTree <| JsArray.map helper subTree
Leaf values ->
Leaf <| JsArray.map func values
in
Array_elm_builtin
len
startShift
(JsArray.map helper tree)
(JsArray.map func tail)
{-| Apply a function on every element with its index as first argument.
indexedMap (*) (fromList [5,5,5]) == fromList [0,5,10]
-}
indexedMap : (Int -> a -> b) -> Array a -> Array b
indexedMap func (Array_elm_builtin len _ tree tail) =
let
helper node builder =
case node of
SubTree subTree ->
JsArray.foldl helper builder subTree
Leaf leaf ->
let
offset =
builder.nodeListSize * branchFactor
mappedLeaf =
Leaf <| JsArray.indexedMap func offset leaf
in
{ tail = builder.tail
, nodeList = mappedLeaf :: builder.nodeList
, nodeListSize = builder.nodeListSize + 1
}
initialBuilder =
{ tail = JsArray.indexedMap func (tailIndex len) tail
, nodeList = []
, nodeListSize = 0
}
in
builderToArray True (JsArray.foldl helper initialBuilder tree)
{-| Append two arrays to a new one.
append (repeat 2 42) (repeat 3 81) == fromList [42,42,81,81,81]
-}
append : Array a -> Array a -> Array a
append ((Array_elm_builtin _ _ _ aTail) as a) (Array_elm_builtin bLen _ bTree bTail) =
-- The magic number 4 has been found with benchmarks
if bLen <= (branchFactor * 4) then
let
foldHelper node array =
case node of
SubTree tree ->
JsArray.foldl foldHelper array tree
Leaf leaf ->
appendHelpTree leaf array
in
JsArray.foldl foldHelper a bTree
|> appendHelpTree bTail
else
let
foldHelper node builder =
case node of
SubTree tree ->
JsArray.foldl foldHelper builder tree
Leaf leaf ->
appendHelpBuilder leaf builder
in
JsArray.foldl foldHelper (builderFromArray a) bTree
|> appendHelpBuilder bTail
|> builderToArray True
appendHelpTree : JsArray a -> Array a -> Array a
appendHelpTree toAppend ((Array_elm_builtin len _ tree tail) as array) =
let
appended =
JsArray.appendN branchFactor tail toAppend
itemsToAppend =
JsArray.length toAppend
notAppended =
branchFactor - (JsArray.length tail) - itemsToAppend
newArray =
unsafeReplaceTail appended array
in
if notAppended < 0 then
let
nextTail =
JsArray.slice notAppended itemsToAppend toAppend
in
unsafeReplaceTail nextTail newArray
else
newArray
appendHelpBuilder : JsArray a -> Builder a -> Builder a
appendHelpBuilder tail builder =
let
appended =
JsArray.appendN branchFactor builder.tail tail
tailLen =
JsArray.length tail
notAppended =
branchFactor - (JsArray.length builder.tail) - tailLen
in
if notAppended < 0 then
{ tail = JsArray.slice notAppended tailLen tail
, nodeList = Leaf appended :: builder.nodeList
, nodeListSize = builder.nodeListSize + 1
}
else if notAppended == 0 then
{ tail = JsArray.empty
, nodeList = Leaf appended :: builder.nodeList
, nodeListSize = builder.nodeListSize + 1
}
else
{ tail = appended
, nodeList = builder.nodeList
, nodeListSize = builder.nodeListSize
}
{-| Get a sub-section of an array: `(slice start end array)`. The `start` is a
zero-based index where we will start our slice. The `end` is a zero-based index
that indicates the end of the slice. The slice extracts up to but not including
`end`.
slice 0 3 (fromList [0,1,2,3,4]) == fromList [0,1,2]
slice 1 4 (fromList [0,1,2,3,4]) == fromList [1,2,3]
Both the `start` and `end` indexes can be negative, indicating an offset from
the end of the array.
slice 1 -1 (fromList [0,1,2,3,4]) == fromList [1,2,3]
slice -2 5 (fromList [0,1,2,3,4]) == fromList [3,4]
This makes it pretty easy to `pop` the last element off of an array:
`slice 0 -1 array`
-}
slice : Int -> Int -> Array a -> Array a
slice from to array =
let
correctFrom =
translateIndex from array
correctTo =
translateIndex to array
in
if correctFrom > correctTo then
empty
else
array
|> sliceRight correctTo
|> sliceLeft correctFrom
{-| Given a relative array index, convert it into an absolute one.
translateIndex -1 someArray == someArray.length - 1
translateIndex -10 someArray == someArray.length - 10
translateIndex 5 someArray == 5
-}
translateIndex : Int -> Array a -> Int
translateIndex index (Array_elm_builtin len _ _ _) =
let
posIndex =
if index < 0 then
len + index
else
index
in
if posIndex < 0 then
0
else if posIndex > len then
len
else
posIndex
{-| This function slices the tree from the right.
First, two things are tested:
1. If the array does not need slicing, return the original array.
2. If the array can be sliced by only slicing the tail, slice the tail.
Otherwise, we do the following:
1. Find the new tail in the tree, promote it to the root tail position and
slice it.
2. Slice every sub tree.
3. Promote subTrees until the tree has the correct height.
-}
sliceRight : Int -> Array a -> Array a
sliceRight end ((Array_elm_builtin len startShift tree tail) as array) =
if end == len then
array
else if end >= tailIndex len then
Array_elm_builtin end startShift tree <|
JsArray.slice 0 (Bitwise.and bitMask end) tail
else
let
endIdx =
tailIndex end
depth =
(endIdx - 1)
|> max 1
|> toFloat
|> logBase (toFloat branchFactor)
|> floor
newShift =
max 5 <| depth * shiftStep
in
Array_elm_builtin
end
newShift
(tree
|> sliceTree startShift endIdx
|> hoistTree startShift newShift
)
(fetchNewTail startShift end endIdx tree)
{-| Slice and return the `Leaf` node after what is to be the last node
in the sliced tree.
-}
fetchNewTail : Int -> Int -> Int -> Tree a -> JsArray a
fetchNewTail shift end treeEnd tree =
let
pos =
Bitwise.and bitMask <| Bitwise.shiftRightZfBy shift treeEnd
in
case JsArray.unsafeGet pos tree of
SubTree sub ->
fetchNewTail (shift - shiftStep) end treeEnd sub
Leaf values ->
JsArray.slice 0 (Bitwise.and bitMask end) values
{-| Shorten the root `Node` of the tree so it is long enough to contain
the `Node` indicated by `endIdx`. Then recursively perform the same operation
to the last node of each `SubTree`.
-}
sliceTree : Int -> Int -> Tree a -> Tree a
sliceTree shift endIdx tree =
let
lastPos =
Bitwise.and bitMask <| Bitwise.shiftRightZfBy shift endIdx
in
case JsArray.unsafeGet lastPos tree of
SubTree sub ->
let
newSub =
sliceTree (shift - shiftStep) endIdx sub
in
if JsArray.length newSub == 0 then
-- The sub is empty, slice it away
JsArray.slice 0 lastPos tree
else
tree
|> JsArray.slice 0 (lastPos + 1)
|> JsArray.unsafeSet lastPos (SubTree newSub)
-- This is supposed to be the new tail. Fetched by `fetchNewTail`.
-- Slice up to, but not including, this point.
Leaf _ ->
JsArray.slice 0 lastPos tree
{-| The tree is supposed to be of a certain depth. Since slicing removes
elements, it could be that the tree should have a smaller depth
than it had originally. This function shortens the height if it is necessary
to do so.
-}
hoistTree : Int -> Int -> Tree a -> Tree a
hoistTree oldShift newShift tree =
if oldShift <= newShift || JsArray.length tree == 0 then
tree
else
case JsArray.unsafeGet 0 tree of
SubTree sub ->
hoistTree (oldShift - shiftStep) newShift sub
Leaf _ ->
tree
{-| This function slices the tree from the left. Such an operation will change
the index of every element after the slice. Which means that we will have to
rebuild the array.
First, two things are tested:
1. If the array does not need slicing, return the original array.
2. If the slice removes every element but those in the tail, slice the tail and
set the tree to the empty array.
Otherwise, we do the following:
1. Add every leaf node in the tree to a list.
2. Drop the nodes which are supposed to be sliced away.
3. Slice the head node of the list, which represents the start of the new array.
4. Create a builder with the tail set as the node from the previous step.
5. Append the remaining nodes into this builder, and create the array.
-}
sliceLeft : Int -> Array a -> Array a
sliceLeft from ((Array_elm_builtin len _ tree tail) as array) =
if from == 0 then
array
else if from >= tailIndex len then
Array_elm_builtin (len - from) shiftStep JsArray.empty <|
JsArray.slice (from - tailIndex len) (JsArray.length tail) tail
else
let
helper node acc =
case node of
SubTree subTree ->
JsArray.foldr helper acc subTree
Leaf leaf ->
leaf :: acc
leafNodes =
JsArray.foldr helper [ tail ] tree
skipNodes =
from // branchFactor
nodesToInsert =
List.drop skipNodes leafNodes
in
case nodesToInsert of
[] ->
empty
head :: rest ->
let
firstSlice =
from - (skipNodes * branchFactor)
initialBuilder =
{ tail =
JsArray.slice
firstSlice
(JsArray.length head)
head
, nodeList = []
, nodeListSize = 0
}
in
List.foldl appendHelpBuilder initialBuilder rest
|> builderToArray True
{-| A builder contains all information necessary to build an array. Adding
information to the builder is fast. A builder is therefore a suitable
intermediary for constructing arrays.
-}
type alias Builder a =
{ tail : JsArray a
, nodeList : List (Node a)
, nodeListSize : Int
}
{-| The empty builder.
-}
emptyBuilder : Builder a
emptyBuilder =
{ tail = JsArray.empty
, nodeList = []
, nodeListSize = 0
}
{-| Converts an array to a builder.
-}
builderFromArray : Array a -> Builder a
builderFromArray (Array_elm_builtin len _ tree tail) =
let
helper node acc =
case node of
SubTree subTree ->
JsArray.foldl helper acc subTree
Leaf _ ->
node :: acc
in
{ tail = tail
, nodeList = JsArray.foldl helper [] tree
, nodeListSize = len // branchFactor
}
{-| Construct an array with the information in a given builder.
Due to the nature of `List` the list of nodes in a builder will often
be in reverse order (that is, the first leaf of the array is the last
node in the node list). This function therefore allows the caller to
specify if the node list should be reversed before building the array.
-}
builderToArray : Bool -> Builder a -> Array a
builderToArray reverseNodeList builder =
if builder.nodeListSize == 0 then
Array_elm_builtin
(JsArray.length builder.tail)
shiftStep
JsArray.empty
builder.tail
else
let
treeLen =
builder.nodeListSize * branchFactor
depth =
(treeLen - 1)
|> toFloat
|> logBase (toFloat branchFactor)
|> floor
correctNodeList =
if reverseNodeList then
List.reverse builder.nodeList
else
builder.nodeList
tree =
treeFromBuilder correctNodeList builder.nodeListSize
in
Array_elm_builtin
(JsArray.length builder.tail + treeLen)
(max 5 <| depth * shiftStep)
tree
builder.tail
{-| Takes a list of leaves and an `Int` specifying how many leaves there are,
and builds a tree structure to be used in an `Array`.
-}
treeFromBuilder : List (Node a) -> Int -> Tree a
treeFromBuilder nodeList nodeListSize =
let
newNodeSize =
((toFloat nodeListSize) / (toFloat branchFactor))
|> ceiling
in
if newNodeSize == 1 then
JsArray.initializeFromList branchFactor nodeList
|> Tuple.first
else
treeFromBuilder
(compressNodes nodeList [])
newNodeSize
{-| Takes a list of nodes and return a list of `SubTree`s containing those
nodes.
-}
compressNodes : List (Node a) -> List (Node a) -> List (Node a)
compressNodes nodes acc =
let
( node, remainingNodes ) =
JsArray.initializeFromList branchFactor nodes
newAcc =
(SubTree node) :: acc
in
case remainingNodes of
[] ->