forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlowrank.py
526 lines (424 loc) · 17.2 KB
/
lowrank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""
Low rank OT solvers
"""
# Author: Laurène David <[email protected]>
#
# License: MIT License
import warnings
from .utils import unif, dist, get_lowrank_lazytensor
from .backend import get_backend
from .bregman import sinkhorn
# test if sklearn is installed for linux-minimal-deps
try:
import sklearn.cluster
sklearn_import = True
except ImportError:
sklearn_import = False
def _init_lr_sinkhorn(X_s, X_t, a, b, rank, init, reg_init, random_state, nx=None):
"""
Implementation of different initialization strategies for the low rank sinkhorn solver (Q ,R, g).
This function is specific to lowrank_sinkhorn.
Parameters
----------
X_s : array-like, shape (n_samples_a, dim)
samples in the source domain
X_t : array-like, shape (n_samples_b, dim)
samples in the target domain
a : array-like, shape (n_samples_a,)
samples weights in the source domain
b : array-like, shape (n_samples_b,)
samples weights in the target domain
rank : int
Nonnegative rank of the OT plan.
init : str
Initialization strategy for Q, R and g. 'random', 'trivial' or 'kmeans'
reg_init : float, optional.
Regularization term for a 'kmeans' init.
random_state : int, optional.
Random state for a "random" or 'kmeans' init strategy
nx : optional, Default is None
POT backend
Returns
---------
Q : array-like, shape (n_samples_a, r)
Init for the first low-rank matrix decomposition of the OT plan (Q)
R: array-like, shape (n_samples_b, r)
Init for the second low-rank matrix decomposition of the OT plan (R)
g : array-like, shape (r, )
Init for the weight vector of the low-rank decomposition of the OT plan (g)
References
-----------
.. [65] Scetbon, M., Cuturi, M., & Peyré, G. (2021).
"Low-rank Sinkhorn factorization". In International Conference on Machine Learning.
"""
if nx is None:
nx = get_backend(X_s, X_t, a, b)
ns = X_s.shape[0]
nt = X_t.shape[0]
r = rank
if init == "random":
nx.seed(seed=random_state)
# Init g
g = nx.abs(nx.randn(r, type_as=X_s)) + 1
g = g / nx.sum(g)
# Init Q
Q = nx.abs(nx.randn(ns, r, type_as=X_s)) + 1
Q = (Q.T * (a / nx.sum(Q, axis=1))).T
# Init R
R = nx.abs(nx.randn(nt, rank, type_as=X_s)) + 1
R = (R.T * (b / nx.sum(R, axis=1))).T
if init == "deterministic":
# Init g
g = nx.ones(rank) / rank
lambda_1 = min(nx.min(a), nx.min(g), nx.min(b)) / 2
a1 = nx.arange(start=1, stop=ns + 1, type_as=X_s)
a1 = a1 / nx.sum(a1)
a2 = (a - lambda_1 * a1) / (1 - lambda_1)
b1 = nx.arange(start=1, stop=nt + 1, type_as=X_s)
b1 = b1 / nx.sum(b1)
b2 = (b - lambda_1 * b1) / (1 - lambda_1)
g1 = nx.arange(start=1, stop=rank + 1, type_as=X_s)
g1 = g1 / nx.sum(g1)
g2 = (g - lambda_1 * g1) / (1 - lambda_1)
# Init Q
Q1 = lambda_1 * nx.dot(a1[:, None], nx.reshape(g1, (1, -1)))
Q2 = (1 - lambda_1) * nx.dot(a2[:, None], nx.reshape(g2, (1, -1)))
Q = Q1 + Q2
# Init R
R1 = lambda_1 * nx.dot(b1[:, None], nx.reshape(g1, (1, -1)))
R2 = (1 - lambda_1) * nx.dot(b2[:, None], nx.reshape(g2, (1, -1)))
R = R1 + R2
if init == "kmeans":
if sklearn_import:
# Init g
g = nx.ones(rank, type_as=X_s) / rank
# Init Q
kmeans_Xs = sklearn.cluster.KMeans(
n_clusters=rank, random_state=random_state, n_init="auto"
)
kmeans_Xs.fit(X_s)
Z_Xs = nx.from_numpy(kmeans_Xs.cluster_centers_)
C_Xs = dist(X_s, Z_Xs) # shape (ns, rank)
C_Xs = C_Xs / nx.max(C_Xs)
Q = sinkhorn(a, g, C_Xs, reg=reg_init, numItermax=10000, stopThr=1e-3)
# Init R
kmeans_Xt = sklearn.cluster.KMeans(
n_clusters=rank, random_state=random_state, n_init="auto"
)
kmeans_Xt.fit(X_t)
Z_Xt = nx.from_numpy(kmeans_Xt.cluster_centers_)
C_Xt = dist(X_t, Z_Xt) # shape (nt, rank)
C_Xt = C_Xt / nx.max(C_Xt)
R = sinkhorn(b, g, C_Xt, reg=reg_init, numItermax=10000, stopThr=1e-3)
else:
raise ImportError(
"Scikit-learn should be installed to use the 'kmeans' init."
)
return Q, R, g
def compute_lr_sqeuclidean_matrix(X_s, X_t, rescale_cost, nx=None):
"""
Compute the low rank decomposition of a squared euclidean distance matrix.
This function won't work for other distance metrics.
See "Section 3.5, proposition 1"
Parameters
----------
X_s : array-like, shape (n_samples_a, dim)
samples in the source domain
X_t : array-like, shape (n_samples_b, dim)
samples in the target domain
rescale_cost : bool
Rescale the low rank factorization of the sqeuclidean cost matrix
nx : default None
POT backend
Returns
----------
M1 : array-like, shape (n_samples_a, dim+2)
First low rank decomposition of the distance matrix
M2 : array-like, shape (n_samples_b, dim+2)
Second low rank decomposition of the distance matrix
References
-----------
.. [65] Scetbon, M., Cuturi, M., & Peyré, G. (2021).
"Low-rank Sinkhorn factorization". In International Conference on Machine Learning.
"""
if nx is None:
nx = get_backend(X_s, X_t)
ns = X_s.shape[0]
nt = X_t.shape[0]
# First low rank decomposition of the cost matrix (A)
array1 = nx.reshape(nx.sum(X_s**2, 1), (-1, 1))
array2 = nx.ones((ns, 1), type_as=X_s)
M1 = nx.concatenate((array1, array2, -2 * X_s), axis=1)
# Second low rank decomposition of the cost matrix (B)
array1 = nx.ones((nt, 1), type_as=X_s)
array2 = nx.reshape(nx.sum(X_t**2, 1), (-1, 1))
M2 = nx.concatenate((array1, array2, X_t), axis=1)
if rescale_cost is True:
M1 = M1 / nx.sqrt(nx.max(M1))
M2 = M2 / nx.sqrt(nx.max(M2))
return M1, M2
def _LR_Dysktra(eps1, eps2, eps3, p1, p2, alpha, stopThr, numItermax, warn, nx=None):
"""
Implementation of the Dykstra algorithm for the Low Rank sinkhorn OT solver.
This function is specific to lowrank_sinkhorn.
Parameters
----------
eps1 : array-like, shape (n_samples_a, r)
First input parameter of the Dykstra algorithm
eps2 : array-like, shape (n_samples_b, r)
Second input parameter of the Dykstra algorithm
eps3 : array-like, shape (r,)
Third input parameter of the Dykstra algorithm
p1 : array-like, shape (n_samples_a,)
Samples weights in the source domain (same as "a" in lowrank_sinkhorn)
p2 : array-like, shape (n_samples_b,)
Samples weights in the target domain (same as "b" in lowrank_sinkhorn)
alpha: int
Lower bound for the weight vector g (same as "alpha" in lowrank_sinkhorn)
stopThr : float
Stop threshold on error
numItermax : int
Max number of iterations
warn : bool, optional
if True, raises a warning if the algorithm doesn't convergence.
nx : default None
POT backend
Returns
----------
Q : array-like, shape (n_samples_a, r)
Dykstra update of the first low-rank matrix decomposition Q
R: array-like, shape (n_samples_b, r)
Dykstra update of the Second low-rank matrix decomposition R
g : array-like, shape (r, )
Dykstra update of the weight vector g
References
----------
.. [65] Scetbon, M., Cuturi, M., & Peyré, G. (2021).
"Low-rank Sinkhorn Factorization". In International Conference on Machine Learning.
"""
# POT backend if None
if nx is None:
nx = get_backend(eps1, eps2, eps3, p1, p2)
# ----------------- Initialisation of Dykstra algorithm -----------------
r = len(eps3) # rank
g_ = nx.copy(eps3) # \tilde{g}
q3_1, q3_2 = nx.ones(r, type_as=p1), nx.ones(r, type_as=p1) # q^{(3)}_1, q^{(3)}_2
v1_, v2_ = (
nx.ones(r, type_as=p1),
nx.ones(r, type_as=p1),
) # \tilde{v}^{(1)}, \tilde{v}^{(2)}
q1, q2 = nx.ones(r, type_as=p1), nx.ones(r, type_as=p1) # q^{(1)}, q^{(2)}
err = 1 # initial error
# --------------------- Dykstra algorithm -------------------------
# See Section 3.3 - "Algorithm 2 LR-Dykstra" in paper
for ii in range(numItermax):
if err > stopThr:
# Compute u^{(1)} and u^{(2)}
u1 = p1 / nx.dot(eps1, v1_)
u2 = p2 / nx.dot(eps2, v2_)
# Compute g, g^{(3)}_1 and update \tilde{g}
g = nx.maximum(alpha, g_ * q3_1)
q3_1 = (g_ * q3_1) / g
g_ = nx.copy(g)
# Compute new value of g with \prod
prod1 = (v1_ * q1) * nx.dot(eps1.T, u1)
prod2 = (v2_ * q2) * nx.dot(eps2.T, u2)
g = (g_ * q3_2 * prod1 * prod2) ** (1 / 3)
# Compute v^{(1)} and v^{(2)}
v1 = g / nx.dot(eps1.T, u1)
v2 = g / nx.dot(eps2.T, u2)
# Compute q^{(1)}, q^{(2)} and q^{(3)}_2
q1 = (v1_ * q1) / v1
q2 = (v2_ * q2) / v2
q3_2 = (g_ * q3_2) / g
# Update values of \tilde{v}^{(1)}, \tilde{v}^{(2)} and \tilde{g}
v1_, v2_ = nx.copy(v1), nx.copy(v2)
g_ = nx.copy(g)
# Compute error
err1 = nx.sum(nx.abs(u1 * (eps1 @ v1) - p1))
err2 = nx.sum(nx.abs(u2 * (eps2 @ v2) - p2))
err = err1 + err2
else:
break
else:
if warn:
warnings.warn(
"Dykstra did not converge. You might want to "
"increase the number of iterations `numItermax` "
)
# Compute low rank matrices Q, R
Q = u1[:, None] * eps1 * v1[None, :]
R = u2[:, None] * eps2 * v2[None, :]
return Q, R, g
def lowrank_sinkhorn(
X_s,
X_t,
a=None,
b=None,
reg=0,
rank=None,
alpha=1e-10,
rescale_cost=True,
init="random",
reg_init=1e-1,
seed_init=49,
gamma_init="rescale",
numItermax=2000,
stopThr=1e-7,
warn=True,
log=False,
):
r"""
Solve the entropic regularization optimal transport problem under low-nonnegative rank constraints
on the couplings.
The function solves the following optimization problem:
.. math::
\mathop{\inf_{(\mathbf{Q},\mathbf{R},\mathbf{g}) \in \mathcal{C}(\mathbf{a},\mathbf{b},r)}} \langle \mathbf{C}, \mathbf{Q}\mathrm{diag}(1/\mathbf{g})\mathbf{R}^\top \rangle -
\mathrm{reg} \cdot H((\mathbf{Q}, \mathbf{R}, \mathbf{g}))
where :
- :math:`\mathbf{C}` is the (`dim_a`, `dim_b`) metric cost matrix
- :math:`H((\mathbf{Q}, \mathbf{R}, \mathbf{g}))` is the values of the three respective entropies evaluated for each term.
- :math:`\mathbf{Q}` and :math:`\mathbf{R}` are the low-rank matrix decomposition of the OT plan
- :math:`\mathbf{g}` is the weight vector for the low-rank decomposition of the OT plan
- :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (histograms, both sum to 1)
- :math:`r` is the rank of the OT plan
- :math:`\mathcal{C}(\mathbf{a}, \mathbf{b}, r)` are the low-rank couplings of the OT problem
Parameters
----------
X_s : array-like, shape (n_samples_a, dim)
samples in the source domain
X_t : array-like, shape (n_samples_b, dim)
samples in the target domain
a : array-like, shape (n_samples_a,)
samples weights in the source domain
b : array-like, shape (n_samples_b,)
samples weights in the target domain
reg : float, optional
Regularization term >0
rank : int, optional. Default is None. (>0)
Nonnegative rank of the OT plan. If None, min(ns, nt) is considered.
alpha : int, optional. Default is 1e-10. (>0 and <1/r)
Lower bound for the weight vector g.
rescale_cost : bool, optional. Default is False
Rescale the low rank factorization of the sqeuclidean cost matrix
init : str, optional. Default is 'random'.
Initialization strategy for the low rank couplings. 'random', 'deterministic' or 'kmeans'
reg_init : float, optional. Default is 1e-1. (>0)
Regularization term for a 'kmeans' init. If None, 1 is considered.
seed_init : int, optional. Default is 49. (>0)
Random state for a 'random' or 'kmeans' init strategy.
gamma_init : str, optional. Default is "rescale".
Initialization strategy for gamma. 'rescale', or 'theory'
Gamma is a constant that scales the convergence criterion of the Mirror Descent
optimization scheme used to compute the low-rank couplings (Q, R and g)
numItermax : int, optional. Default is 2000.
Max number of iterations for the Dykstra algorithm
stopThr : float, optional. Default is 1e-7.
Stop threshold on error (>0) in Dykstra
warn : bool, optional
if True, raises a warning if the algorithm doesn't convergence.
log : bool, optional
record log if True
Returns
---------
Q : array-like, shape (n_samples_a, r)
First low-rank matrix decomposition of the OT plan
R: array-like, shape (n_samples_b, r)
Second low-rank matrix decomposition of the OT plan
g : array-like, shape (r, )
Weight vector for the low-rank decomposition of the OT
log : dict (lazy_plan, value and value_linear)
log dictionary return only if log==True in parameters
References
----------
.. [65] Scetbon, M., Cuturi, M., & Peyré, G. (2021).
"Low-rank Sinkhorn Factorization". In International Conference on Machine Learning.
"""
# POT backend
nx = get_backend(X_s, X_t)
ns, nt = X_s.shape[0], X_t.shape[0]
# Initialize weights a, b
if a is None:
a = unif(ns, type_as=X_s)
if b is None:
b = unif(nt, type_as=X_t)
# Compute rank (see Section 3.1, def 1)
r = rank
if rank is None:
r = min(ns, nt)
else:
r = min(ns, nt, rank)
if r <= 0:
raise ValueError("The rank parameter cannot have a negative value")
# Dykstra won't converge if 1/rank < alpha (see Section 3.2)
if 1 / r < alpha:
raise ValueError(
"alpha ({a}) should be smaller than 1/rank ({r}) for the Dykstra algorithm to converge.".format(
a=alpha, r=1 / rank
)
)
# Low rank decomposition of the sqeuclidean cost matrix
M1, M2 = compute_lr_sqeuclidean_matrix(X_s, X_t, rescale_cost, nx)
# Initialize the low rank matrices Q, R, g
Q, R, g = _init_lr_sinkhorn(X_s, X_t, a, b, r, init, reg_init, seed_init, nx=nx)
# Gamma initialization
if gamma_init == "theory":
L = nx.sqrt(
3 * (2 / (alpha**4)) * ((nx.norm(M1) * nx.norm(M2)) ** 2)
+ (reg + (2 / (alpha**3)) * (nx.norm(M1) * nx.norm(M2))) ** 2
)
gamma = 1 / (2 * L)
if gamma_init not in ["rescale", "theory"]:
raise (
NotImplementedError('Not implemented gamma_init="{}"'.format(gamma_init))
)
# -------------------------- Low rank algorithm ------------------------------
# see "Section 3.3, Algorithm 3 LOT"
for ii in range(100):
# Compute C*R dot using the lr decomposition of C
CR = nx.dot(M2.T, R)
CR_ = nx.dot(M1, CR)
diag_g = (1 / g)[None, :]
CR_g = CR_ * diag_g
# Compute C.T * Q using the lr decomposition of C
CQ = nx.dot(M1.T, Q)
CQ_ = nx.dot(M2, CQ)
CQ_g = CQ_ * diag_g
# Compute omega
omega = nx.diag(nx.dot(Q.T, CR_))
# Rescale gamma at each iteration
if gamma_init == "rescale":
norm_1 = nx.max(nx.abs(CR_ * diag_g + reg * nx.log(Q))) ** 2
norm_2 = nx.max(nx.abs(CQ_ * diag_g + reg * nx.log(R))) ** 2
norm_3 = nx.max(nx.abs(-omega * diag_g)) ** 2
gamma = 10 / max(norm_1, norm_2, norm_3)
eps1 = nx.exp(-gamma * CR_g - ((gamma * reg) - 1) * nx.log(Q))
eps2 = nx.exp(-gamma * CQ_g - ((gamma * reg) - 1) * nx.log(R))
eps3 = nx.exp((gamma * omega / (g**2)) - (gamma * reg - 1) * nx.log(g))
# LR Dykstra algorithm
Q, R, g = _LR_Dysktra(
eps1, eps2, eps3, a, b, alpha, stopThr, numItermax, warn, nx
)
Q = Q + 1e-16
R = R + 1e-16
g = g + 1e-16
# ----------------- Compute lazy_plan, value and value_linear ------------------
# see "Section 3.2: The Low-rank OT Problem" in the paper
# Compute lazy plan (using LazyTensor class)
lazy_plan = get_lowrank_lazytensor(Q, R, 1 / g)
# Compute value_linear (using trace formula)
v1 = nx.dot(Q.T, M1)
v2 = nx.dot(R, (v1.T * diag_g).T)
value_linear = nx.sum(nx.diag(nx.dot(M2.T, v2)))
# Compute value with entropy reg (see "Section 3.2" in the paper)
reg_Q = nx.sum(Q * nx.log(Q + 1e-16)) # entropy for Q
reg_g = nx.sum(g * nx.log(g + 1e-16)) # entropy for g
reg_R = nx.sum(R * nx.log(R + 1e-16)) # entropy for R
value = value_linear + reg * (reg_Q + reg_g + reg_R)
if log:
dict_log = dict()
dict_log["value"] = value
dict_log["value_linear"] = value_linear
dict_log["lazy_plan"] = lazy_plan
return Q, R, g, dict_log
return Q, R, g